АПДЛ.656121 РЭ1 _{ред. 1}

МИКРОПРОЦЕССОРНОЕ УСТРОЙСТВО ЗАЩИТЫ «МИР»

МИР 50

МИР 200

МИР 100

МИР 300

Общие технические требования

	АВЛЕНИЕ	
	ВЛЕНИЕ	
, ,	ЕНИЕ	
	ОВНЫЕ ОБОЗНАЧЕНИЯ	
	овные сокращения	
	ПИСАНИЕ И РАБОТА	
1.1.	Назначение изделия	
1.2.	Основные технические характеристики	
1.3.	Состав изделия	
1.4.	Устройство и работа	
1.5.	Средства измерения, инструмент и принадлежности	
1.6.	Маркировка и пломбирование	
1.7.		
	КАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	
2.1.	Эксплуатационные ограничения	
2.2.	Подготовка к работе и ввод в эксплуатацию	35
2.3.	Настройка редактируемых параметров	
2.4.	11	
3. T	ЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	59
3.1.	Общие указания	
3.2.	Меры безопасности	60
3.3.	Порядок технического обслуживания и проверка работоспособности изделия	
3.4.	Перечень неисправностей и методы их устранения	62
3.5.	Утилизация	63
4. T	РАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	64
5. Γ.	АРАНТИИ ИЗГОТОВИТЕЛЯ	65
ПРИЛ		66
При	ложение 1 – Структура условного обозначения	66
При	ложение 2 – Внешний вид, габаритные, установочные и присоединительные размеры	67
B	ыносной дисплей	67
M	ІИР 50	73
M	ІИР 100	79
M	ІИР 200	92
M	IИР 300	105
При	ложение 3 – Стандартная схема подключения	111
P	3A	111
Б	ABP	128
A	BP	132
При	ложение 4 – Обозначение контактов портов связи	137
	ложение 5— Перечень оборудования и средств измерений, необходимых для прог зерок	
При	ложение 6 – Учет времени насыщения трансформаторов тока	139
При	ложение 7 – Лист регистрации изменений	140
	НИЦА ДЛЯ ЗАМЕТОК	
	ГАИТЬ А В ИНЖОРМАНИЯ	1/12

ВВЕДЕНИЕ

ДО ИЗУЧЕНИЯ НАСТОЯЩЕГО РУКОВОДСТВА ПО ЭКСПЛУАТАЦИИ ТЕРМИНАЛ НЕ ВКЛЮЧАТЬ!!!

Настоящее руководство по эксплуатации (РЭ) распространяется на микропроцессорные устройства релейной защиты и автоматики типа «МИР» (именуемые далее «терминалы») и содержит необходимые сведения для изучения технических характеристик, устанавливает правила его эксплуатации, обслуживания, хранения и транспортирования.

Терминалы серии «МИР» описаны следующими РЭ:

- АПДЛ.656121 РЭ1 «Руководство по эксплуатации. Общие технические условия» содержит технические данные, описание конструктивного исполнения, описание устройства и работы составных частей терминала, указания по эксплуатации и техническому обслуживанию.
- АПДЛ.656121xxx* РЭ2 «Руководство оператора» содержит описание функциональной и логической схемы соответствующего терминала защиты и автоматики (взаимодействие блоков логики и защиты).

Устройства выполнены на микропроцессорной элементной базе и комплектуются унифицированными блоками. В терминал записывается общее ПО вне зависимости от вида защищаемого элемента электрической системы, которое и обеспечивает выполнение необходимых функций. Терминал имеет свободно конфигурируемую логику, применение которой позволяет модифицировать типовые функциональные логические схемы, учитывая специфику защищаемого объекта.

Вид климатического исполнения и категория размещения терминала для поставок в Российскую Федерацию и на экспорт в страны с умеренным климатом — УХЛ 3.1 по ГОСТ 15150-69.

Надежность и долговечность устройства обеспечиваются не только качеством изделия, но и соблюдением режимов и условий эксплуатации, требований по транспортированию, хранению, монтажу. Поэтому выполнение всех требований, изложенных в настоящем документе, является обязательным.

Примечание: Настоящее руководство распространяется на все терминалы OOO «АПС» серии «МИР».

Примеры приведены для стандартной конфигурации P3A тип 1 «**МИР 100**», за исключением случаев, указанных отдельно.

Настоящее РЭ разработано в соответствии с требованиями ТУ 656121-002-60432852-2023 «Устройство защиты «МИР».

В связи с систематически проводимыми работами по совершенствованию изделия в его конструкцию могут быть внесены изменения, улучшающие параметры и качество изделия, не отраженные в настоящем издании. Предприятие-изготовитель оставляет за собой право внесения изменений и улучшений терминала без предварительного уведомления потребителя.

^{*}Примечание: Шифр, соответствующий определенному типу устройства.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Условные сокращения

Таблица АПС. 1. Условные сокращения

	Апс. 1. условные сокращения
ABP	Автоматический ввод резерва
АСК	Автоматика синхронной коммутации
АСУ ТП	Автоматизированная система управления технологическим процессом
АЦП	Аналого-цифровой преобразователь
БК НЗ	Блок-контакт силового выключателя нормально замкнут
БК НО	Блок-контакт силового выключателя нормально открыт
БНН	Блокировка при неисправности в цепях напряжения
BB	Высоковольтный выключатель
BTX	Время – токовая характеристика
ИО	Измерительный орган
К3	Короткое замыкание
КЛ	Кабельная линия
КРУ	Комплектное распределительное устройство
КРУН	Комплектное распределительное устройство наружной установки
КСО	Камера сборная одностороннего обслуживания
КЦТ	Контроль цепей тока
ЛЗШ	Логическая защита шин
МП РЗА	Микропроцессорное устройство релейной защиты и автоматики
ПК	Персональный компьютер
ПМИ	Программа и методика испытаний
ПО	Программное обеспечение
ПТЭЭП	Правила технической эксплуатации электроустановок потребителей
PHM	Реле направления мощности
СШ	Секция шин
TH	Трансформатор напряжения
TO	Техническое обслуживание
TT	Трансформатор тока
УКРМ	Устройство компенсации реактивной мощности
УРОВ	Устройство резервирования отказа выключателя
УСК	Устройство синхронной коммутации
AC/DC	Переменный/Постоянный ток
HMI	Human-machine interface (Человеко-машинный интерфейс)
NOC	Электромеханическое реле с контактами НО/НЗ
0	Электромеханическое реле
PSO	Силовое твердотельное реле
SO	Твердотельное реле
WD	WatchDog

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение изделия

1.1.1. Терминалы предназначены для установки в релейных отсеках КСО, КРУ, КРУН, на панелях, в шкафах и пультах управления электрических станций и подстанций.

Устройства могут применяться на подстанциях с переменным, выпрямленным переменным, постоянным оперативным током, за исключением терминалов серии «БАВР», которым требуется постоянный оперативный ток.

- **P3A Тип 1.** Терминалы «**МИР P3A»** микропроцессорные устройства, предназначенные для осуществления функций защиты, управления и сигнализации на объектах энергетики с напряжением 0,4÷110 кВ.
- **РЗА Тип 2.** Терминалы «**МИР** Д**ЗТ**» микропроцессорные устройства, предназначенные для осуществления функций дифференциальной защиты трансформатора на объектах энергетики с напряжением 0,4÷110 кВ.
- **РЗА Тип 3.** Терминалы «**МИР** Д**ЗМ**» микропроцессорные устройства, предназначенные для осуществления функций дифференциальной защиты двигателя и генератора на объектах энергетики с напряжением 0,4÷35 кВ.
- **РЗА Тип 4.** Терминалы «**МИР УСК**» микропроцессорные устройства, предназначенные для осуществления функций синхронной коммутации ВВ 0,4÷110кВ на ПС 0,4÷330кВ, релейной защиты, управления и сигнализации на объектах энергетики.
- **РЗА Тип 5.** Терминалы «**МИР 200 ЦС**» микропроцессорные устройства, предназначены для выполнения функций общесекционного устройства центральной сигнализации на объектах энергетики с напряжением 0,4÷110 кВ, оборудованных цифровыми или электромеханическими устройствами релейной защиты и автоматики (**РЗА**).
- **РЗА Тип 6.** Терминалы «**МИР** Д**З**Л» микропроцессорные устройства, предназначенные для осуществления функций дифференциальной защиты линии на объектах энергетики с напряжением 6÷110 кВ.
- **ABP.** Терминалы «**МИР ABP»** микропроцессорные устройства, предназначенные для осуществления функций автоматического ввода резерва на объектах энергетики с напряжением 0,4÷35кВ с функциями ВНР и УКРМ.
- **БАВР.** Терминалы «**МИР БАВР»** микропроцессорные устройства, предназначенные для осуществления функций быстродействующего автоматического ввода резерва на объектах энергетики с напряжением 0,4÷35кВ с функциями ВНР и УКРМ.

Примечание: В связи с систематически проводимыми работами по совершенствованию, могут появляться новые подтипы исполнения устройств. При необходимости обращайтесь к производителю.

- **1.1.2.** Терминалы являются свободно конфигурируемыми. Дискретные входа / выхода и аналоговые входа могут быть назначены на требуемые каналы. Применение свободно программируемой логики позволяет модифицировать типовые функциональные логические схемы, учитывая специфику защищаемого объекта.
- **1.1.3.** Функциональное назначение устройства отражается в структуре его условного обозначения, приведенной в **Приложении 1**.

1.2. Основные технические характеристики

1.2.1. Основные параметры и потребляемая мощность

1.2.1.1. Габаритные размеры терминалов серии «МИР» представлены в Таблице 1.2.1. (более подробно для различных исполнений приведено в **Приложении 2**). Номинальные технические параметры стандартных исполнений устройств указаны в Таблицах 1.2.2. —1.2.8. Параметры поясов Роговского указаны в Таблице 1.2.9. Список защит приведен в Таблицах 1.2.10. - 1.2.12.

Аналоговые платы могут быть выполнены как на классических ТТ, так и на поясах Роговоского. Также могут быть применены дискретные платы различных типов. Данные изменения опциональны, уточняйте у производителя.

Таблица 1.2.1. Габаритные размеры терминалов серии «МИР»

	Габаритные размеры	50	100	200	300	
Vanilla Tanilla II	Глубина, мм	216	216	216	216	
Корпус терминала	Ширина, мм	156	156	228	332	
без дисплея	Высота, мм	194	306	306	306	
	Глубина, мм		218	218		
Стационарный дисплей	Ширина, мм	_	196	268	_	
	Высота, мм		276	276		
	Глубина, мм		3	9		
Выносной дисплей	Ширина, мм		19	96		
	Высота, мм	276				

Таблица 1.2.2. Номинальные технические параме	етры МП РЗА сер	рии «МИР 50»
---	-----------------	---------------------

РЗА Тип 1								
Наиме	Наименование параметра			Описание параметра				
Номинальное напряж	кение питания, В			=/~ 220				
Диапазон напряжени	я питания, В				=/~ 140÷265			
Диапазон значений,	В	Фазное Линейное	57/220 100/380		3 канала (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В			
Номинальное значен	Номинальное значение тока аналогового входа, А		1/5		 1 и 3 канала на 1/5A (I) 2 настраиваемый канал: I (1/5A) или I_N (0,2/1A) 			
Диапазон контролир	уемых значений з	гока, А	0,1÷200 0,05÷60		Токи фаз * I_A , I_B , I_C . Ток I_N			
Термическая стойкос	Термическая стойкость входных цепей, А		32 250		Длительная Кратковременная (не более 1c)			
Количество дискретн	ных входов, шт.		10		=/~ 220B			
Напряжение сраб. ди	скретных входов	, В		$=165 \div 170$				
Напряжение возвр. д	искретных входо	в, В			=146÷154			
Количество	О – электромех	анические, шт.	8		1) схема подключения представлена в Приложении 3;			
дискретных выходов	SO – твердотел (быстродейству		1	9	2) из них 7 нормально открытых реле и 1 перекидное реле (HO + H3); 3) так же присутствует 1 перекидное реле WatchDog с двумя группами контактов (2HO + 2H3).			
	USB A, шт.	Лицевая панель			1			
Физический	USB B, шт.				1			
интерфейсы связи	RJ45, шт.	Задняя панель		2	Modbus TCP/IP, SNTP, FTP			
	RS485, шт.		2		Modbus RTU			
Время включения те	Время включения терминала, с			0,600				
Перерыв питания без	Перерыв питания без перезапуска, с				0,700			
Вес не более, кг		4		Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг				

Таблица 1.2.3. Номинальные технические пара	аметры МП РЗА серии	и «МИР 100»
---	---------------------	--------------------

РЗА Тип 1, Тип 2 (ДЗТ), Тип 3 (ДЗМ), Тип 4 (УСК), тип 6 (ДЗЛ)								
Наименование параметра			Описание параметра					
Номинальное напряжение питания, В				=/~ 220				
Диапазон напряжени	я питания, В				=/~ 140÷265			
Диапазон значений,	В	Фазное Линейное	57/220 100/380		6 каналов (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В			
Номинальное значение тока аналогового входа, А		ого входа, А	1/5		6 каналов (доступно для параметрирования как фазных токов на всех каналах, так и IN на каналах 2/5)			
Диапазон контролир	Диапазон контролируемых значений тока, А		0,1÷200 0,05÷60		Токи фаз * I_A , I_B , I_C . Ток I_N			
Термическая стойкос	Термическая стойкость входных цепей, А		32 250		Длительная Кратковременная (не более 1c)			
Количество дискретн	ных входов, шт.		30		=/~ 220B			
Напряжение сраб. ди	скретных входов	, B			=165÷170			
Напряжение возвр. д	искретных входо	в, В			=146÷154			
Количество	О – электромех	анические, шт.	18		1) схема подключения представлена в Приложении 3;			
дискретных выходов		SO – твердотельные (быстродействующие), шт.		18	2) из них 16 нормально открытых реле и 1 перекидное реле (HO + H3); 3) так же присутствует 1 перекидное реле WatchDog (HO + H3).			
	USB A, IIIT.	Лицевая панель			1			
Физические	USB B, шт.				1			
интерфейсы связи	RJ45, шт.	Задняя панель		3	Modbus TCP/IP, SNTP, FTP			
	RS485, шт.			2	Modbus RTU			
Время включения терминала, с		0,600						
Перерыв питания без	Перерыв питания без перезапуска, с				0,700			
Вес не более, кг		7		Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг				

Таблица 1.2.4.	Номинальные	технические	параметр	ы МП РЗА	серии	«МИР	200»

РЗА Тип 1, Тип 2 (ДЗТ), Тип 3 (ДЗМ), Тип 4 (УСК), Тип 5 (ЦС), тип 6 (ДЗЛ)								
Наименование параметра			Описание параметра					
Номинальное напряжение питания, В			=/~ 220					
Диапазон напряжения	питания, В				=/~ 140÷265			
					6 каналов (1 аналоговая плата)	12 каналов (2 аналоговые платы)		
Диапазон значений, В		Фазное Линейное	_	7/220 00/380	(для РЗА Тип 1, Тип 2 (ДЗТ), Тип 3 (ДЗМ), Тип 4 (УСК), тип 6 (ДЗЛ))	(для РЗА Тип 2 (ДЗТ), Тип 3 (ДЗМ))		
					Примечание: длительное максимал	ак ТН СШ+3U0, так и ТН КЛ+3U0) пьное напряжение одного входа 243В		
					6 каналов (1 аналоговая плата)	12 каналов (2 аналоговые платы)		
Номинальное значение	е тока аналогового	входа, А	1/5		(для РЗА Тип1, Тип 2 (ДЗТ), Тип 3 (ДЗМ), Тип 4(УСК), тип 6 (ДЗЛ))	(для РЗА Тип 2 (ДЗТ), Тип 3 (ДЗМ))		
					(доступно для параметрирования как фазных токов на всех канал так и IN на каналах 2/5 каждой платы)			
Диапазон контролируе	емых значений тока	, A	0,1÷200 0,05÷60		Токи фаз* I _A , I _B , I _C . Ток I _N			
Термическая стойкост	ь входных цепей, А		32 250		Длительная Кратковременная (не более 1c)			
Количество дискретны	іх входов, шт.		38		=/~ 220B			
Напряжение сраб. дист	кретных входов, В		=165÷170					
Напряжение возвр. дис	скретных входов, В		=146÷154		$=146 \div 154$			
Количество	О – электромеха	нические, шт.	26		1) схема подключения представлена	в Приложении 3;		
дискретных	SO – твердотелы	ные	0	26	2) из них 24 нормально открытых реле			
выходов	(быстродействун	ощие), шт.	U		3) так же присутствует 1 перекидное р	реле WatchDog (HO + H3).		
	USB A, iiit.	Лицевая панель			1			
Физические	USB B, IIIT.				1			
интерфейсы связи RJ45, шт. Задняя панель RS485, шт.		Задняя панель		3	Modbus TCP/IP, SNTP, FTP			
		2		Modbus RTU				
	Время включения терминала, с			0,600				
Перерыв питания без перезапуска, мм			0,700					
Вес не более, кг				10 Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг				

,				ABP	с функцией э кт w серии «ми 100»		
Наименование параметра				Описание параметра			
Номинальное напрях	кение питания, В				=/~ 220		
Диапазон напряжени	ия питания, В				=/~ 140÷265		
Диапазон значений, В Фазное Линейное		57/220 100/380		6 каналов (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В. Под заказ могут быть выполнены платы до 1кВ.			
Номинальное значен	ие измеряемого	гока, А	5÷	100 000	6 каналов тока:		
Диапазон контролиру	Диапазон контролируемых значений входного сигнала, В			001÷10	Токи фаз ввода 1: I_A , I_B , I_C . Токи фаз ввода 2: I_A , I_B , I_C .		
Количество дискрети	ных входов, шт.		30		=/~ 220B		
Напряжение сраб. ди	іскретных входов	s, B		$=165 \div 170$			
Напряжение возвр. д	искретных входо	ов, В			$=146 \div 154$		
Количество	О – электромех	анические, шт.	18		1) схема подключения представлена в Приложении 3;		
дискретных выходов		SO – твердотельные (быстродействующие), шт.		18	2) из них 16 нормально открытых реле и 1 перекидное реле (HO + H3); 3) так же присутствует 1 перекидное реле WatchDog (HO + H3).		
	USB A, шт.	Лицевая панель			1		
Физические	USB В, шт.				1		
интерфейсы связи	RJ45, шт.	Задняя панель		3 Modbus TCP/IP, SNTP, FTP			
	RS485, шт.		2		Modbus RTU		
Время включения терминала, с		0,600					
Перерыв питания бе	Перерыв питания без перезапуска, с				0,700		
Вес не более, кг			7	Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг			

Таблица 1.2.6. Номинальные технические па	параметры МП АВР о	с функцией УКРМ сери	и «МИР 200 »
---	--------------------	----------------------	---------------------

				ABP				
Наиме	енование парамо	етра			Описание параметра			
	Номинальное напряжение питания, В			=/~ 220				
Диапазон напряжени	ия питания, В			=/~ 140÷265				
Диапазон значений, В Фазное Линейное		57/220 100/380		12 каналов (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В. Под заказ могут быть выполнены платы до 1кВ.				
Номинальное значение тока аналогового входа, А			1/5		12 каналов (доступно для параметрирования как фазных токов на всех каналах, так и IN на каналах 2/5 каждой платы)			
Диапазон контролир	Диапазон контролируемых значений тока, А		0,1÷200 0,05÷60		Токи фаз * I_A , I_B , I_C . Ток I_N			
Термическая стойко	Термическая стойкость входных цепей, А		32 250		Длительная Кратковременная (не более 1c)			
Количество дискрета	ных входов, шт.		38		=/~ 220B			
Напряжение сраб. ди	искретных входог	в, В	=165÷170					
Напряжение возвр. д	искретных входо	ов, В	=146÷154					
Количество	О – электромех	канические, шт.	26		1) схема подключения представлена в Приложении 3;			
дискретных выходов	SO – твердотел (быстродейству		0	26	2) из них 24 нормально открытых реле и 1 перекидное реле (HO + H3); 3) так же присутствует 1 перекидное реле WatchDog (HO + H3).			
	USB A, шт.	Лицевая панель			1			
Физические	USB B, шт.				1			
интерфейсы связи	RJ45, шт.	Задняя панель	3		3		Modbus TCP/IP, SNTP, FTP	
RS485, шт.		2		Modbus RTU				
Время включения терминала, с			0,600					
Перерыв питания бе	з перезапуска, мм	Л		0,700				
Вес не более, кг		10		Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг				

Таблица 1.2.7. Но	оминальные технические	параметры МГ	I БАВР серии	и «МИР 200»
--------------------------	------------------------	--------------	--------------	-------------

			БАВР				
Наиме	нование параме	гра	Описание параметра				
Номинальное напрях	Номинальное напряжение питания, В			=/~ 220			
Диапазон напряжени	я питания, В				=/~ 140÷265		
Диапазон значений, В Фазное Линейное			57/220 100/380		12 каналов (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В		
Номинальное значение тока аналогового входа, А		ого входа, А	1/5		12 каналов (доступно для параметрирования как фазных токов на всех каналах, так и IN на каналах 2/5 каждой платы)		
Диапазон контролир	уемых значений т	ока, А	0,1÷200 0,05÷60		Токи фаз * I_A , I_B , I_C . Ток I_N		
Термическая стойко	Термическая стойкость входных цепей, А		32 250		Длительная Кратковременная (не более 1c)		
Количество дискрети	ных входов, шт.		32		=/~ 220B		
Напряжение сраб. ди	скретных входов	, B		$=165 \div 170$			
Напряжение возвр. д	искретных входо	в, В			=146÷154		
Количество	O – электромех SO – твердотел	ьные	20 6	<u>-</u>	1) схема подключения представлена в Приложении 3;		
дискретных выходов	(быстродейству PSO – силовое (быстродейству	твердотельное	3	29	2) из них 27 нормально открытых реле и 1 перекидное реле (HO + H3): 3) так же присутствует 1 перекидное реле WatchDog (HO + H3)		
	USB A, IIIT.	Лицевая панель			1		
Физические	USB B, IIIT.	,	1		1		
интерфейсы связи	RJ45, шт.	Задняя панель	3		Modbus TCP/IP, SNTP, FTP		
RS485, шт.		2		Modbus RTU			
Время включения терминала, с				0,600			
Перерыв питания бе	з перезапуска, мм				0,700		
Вес не более, кг		10		Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг			

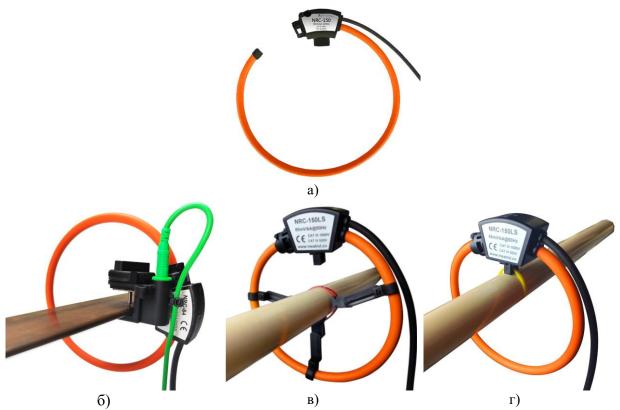


Таблица 1.2.8. Номинальные технические параметры МП БАВР серии «МИР 300»

Наиме	Наименование параметра			Описание параметра			
Номинальное напряж	кение питания, В		=/~ 220				
Диапазон напряжени	я питания, В				=/~ 140÷265		
Диапазон значений, В Фазное Линейное			57/220 100/380		18 каналов (доступно для параметрирования как ТН СШ+3U0, так и ТН КЛ+3U0) Примечание: длительное максимальное напряжение одного входа 243В		
Номинальное значение тока аналогового входа, А			1/5		18 каналов (доступно для параметрирования как фазных токов на всех каналах, так и IN на каналах 2/5 каждой платы)		
Диапазон контролир	уемых значений т	гока, А		1÷200 05÷60	Токи фаз st I_A , I_B , I_C . Ток I_N		
Терминеская стойкос	Термическая стойкость входных цепей, А		32		Длительная		
термическая стоикос	ль влодных цене.	л, л	250		Кратковременная (не более 1с)		
Количество дискретн	ных входов, шт.		46		=/~ 220B		
Напряжение сраб. ди	скретных входов	, B	$=165 \div 170$				
Напряжение возвр. д	искретных входо	в, В			$=146 \div 154$		
	О – электромех	анические, шт.	34				
Количество	SO – твердотел		0		1) схема подключения представлена в Приложении 3;		
дискретных	(быстродейству		50		2) из них 48 нормально открытых реле и 1 перекидное реле (НО + НЗ);		
выходов	PSO – силовое (быстродейству		16		3) так же присутствует 1 перекидное реле WatchDog (HO + H3).		
	USB A, шт.	Лицевая панель			1		
Физические	USB B, шт.				1		
интерфейсы связи	RJ45, шт.	Задняя панель	3		Modbus TCP/IP, SNTP, FTP		
RS485, шт.			2	Modbus RTU			
Время включения тер	Время включения терминала, с			0,600			
Перерыв питания без	в перезапуска, мм			0,700			
Вес не более, кг			14		Вес выносного блока дисплея равен 2 кг, вес кабеля связи 0,25 кг		

Рис. 1.2.1. Внешний вид пояса Роговского NRC и варианты его крепления а) внешний вид пояса в разомкнутом состоянии;

- б) установка пояса на шине;
 - в) трехосное крепление;
 - г) крепление на стяжку

Таблица 1.2.9. Сводная таблица параметров поясов Роговского NRC

Модель	NRC-150*
Длина катушки	525 мм
Размер окна	150 мм
Номинальный ток	3000 A
Bec	150 г
Калибровочный коэффициент при 50 Гц	100 мВ/кА
Номинальная погрешность	<0,5% (центральное положение, при температуре 25°C)
Диапазон измеряемого тока	5÷100 000 A
Диаметр катушки	8 мм
Длина провода	20 м
Погрешность центровки	<1%
Смещение нуля	≤0,05 мВ
Фазовая погрешность	≤0,5°
Рабочая температура	от-30°С до +80°С
Температура хранения	от-40°С до +90°С

^{*}Примечание: Приведено стандартное исполнение, при необходимости иных параметров уточняйте у производителя.

Таблица 1.2.10. Сводная таблица защит по используемому типу устройства (терминал РЗА)

Код	Полное		Тип 2	Тип 3	Тип 4	Тип 5	Тип 6	M	ЭК
ANSI	наименование	Тип 1	ДЗТ	дзм	УСК	ЦС	ДЗЛ	61850	60617
21	21: Дистанционная защита (ДЗ)	•	0	•	0	0	•	PDIS	Z<
21FL	21FL: Определение места повреждения (ОМП)	•	0	0	0	0	•	RFLO	
25	25: Контроль синхронизма (КС)	•	0	•	0	0	•	RSYN	SYNC
27R	27R: Защита от остаточного напряжения, минимального действия (3MHO)	•	0	•	•	0	0		
27/27S	27/27S: Защита минимального напряжения (3MH)	•	•	•	•	•	•	PTUV	U<
32P	32Р: Защита по активной мощности, направленная (ЗАМ напр.)	•	0	•	0	0	0	PDUP	P<>
32Q	32Q: Защита по реактивной мощности, направленная (3PM напр.)	•	0	•	0	0	0		Q<>
37	37: Защита минимального тока (3МТ)	•	0	•	0	•	0	PTUC	I<
40	40: Защита от потери возбуждения (ЗПВ)	•	0	•	0	0	0		X<
46	46: Токовая защита обратной последовательности (ТЗОП)	•	•	•	•	0	•	PTOC	I2>
47	47: Защита по напряжению обратной последовательности (ЗНОП)	•	•	•	•	0	•	PTOV	
48/51LR	48/51LR: Затянутый пуск/блокировка ротора (ЗПД)	•	0	•	0	0	0		
49	49: Защита от тепловой перегрузки (ЗТП)	•	0	•	0	0	0	PTTR	T>
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	•	•	•	•	PHPTOC	I>
50BF	50ВГ: Устройство резервирования отказа выключателя (УРОВ)	•	•	•	•	0	•	RBRF	BF
50N/51N	50N/51N: Максимальная токовая защита нулевой последовательности (МТЗНП)	•	•	•	•	0	•	EFPTOC	Io>
52	52: Управление, контроль и мониторинг выключателя	•	•	•	•	0	0	XCBR	СВ
59	59: Защита от повышения напряжения (ЗПН)	•	•	•	•	•	•	PTOV	V>
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	•	•	•	0	•	ZCPTOV	
60 VTS	60 VTS: Блокировка при неисправности в цепях напряжения (БНН)	•	•	•	•	0	•	RVTR	VTS
60 CTS	60 CTS: Контроль цепей тока (КЦТ)	•	•	•	•	0	•	SCTR	CTS
66	66: Число пусков	•	0	•	0	0	0	PMRI	
67	67: Максимальная токовая защита, направленная (МТЗ напр.)	•	•	•	•	0	•	PTOC	
67N	67N: Максимальная токовая защита нулевой последовательности, направленная (МТЗНП напр.)	•	•	•	•	0	•	RPSB	
68	68: Отстройка от бросков тока	•	•	•	•	0	0		
79	79: Автоматическое повторное включение (АПВ)	•	0	0	•	0	•	RREC	0?1
81H	81Н: Защита максимальной частоты (ЗМЧ)	•	0	•	•	0	•	FrqPTOF	f>
81L	81L: Защита минимальной частоты (АЧР)	•	0	•	•	0	•	FrqPTUF	f<
87M	87М: Дифференциальная защита электрической машины (ДЗМ)	0	0	•	0	0	0	PDIF	Id>
87T	87Т: Дифференциальная защита трансформатора (ДЗТ)	0	•	0	0	0	0	PDIF	Id>
87L	87L: Дифференциальная защита линии (ДЗЛ)	0	0	0	0	0	•	PDIF	Id>
	Автоматический ввод резерва (АВР)	•	0	0	0	0	•	ABTS	
	Восстановление нормального режима (ВНР)	•	0	0	0	0	•	ANSR	
	Логическая защита шин (ЛЗШ)	•	0	•	•	0	•	BPS	
	Автоматика синхронной коммутации (АСК)	0	0	0	•	0	0		

Таблица 1.2.11. Сводная таблица защит по используемому типу устройства (терминал БАВР)

Ta	Таблица 1.2.11. Сводная таблица защит по используемому типу устройства (терминал БАВР)					
Код	Полное	Тип	Тип	МЭН	(
ANSI	наименование	1	2	61850	60617	
	БАВР					
25	25: Контроль синхронизма (КС)	•	•	RSYN	SYNC	
27/27S	27/27S: Защита минимального напряжения (ЗМН)	•	•	PTUV	U<	
37	37: Защита минимального тока (ЗМТ)	•	•	PTUC	I<	
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	PHPTOC	I>	
50N/51N	50N/51N: Максимальная токовая защита нулевой последовательности (МТЗНП)	•	•	EFPTOC	Io>	
59	59: Защита от повышения напряжения (ЗПН)	•	•	PTOV	V>	
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	•	ZCPTOV		
67N	67N: Максимальная токовая защита нулевой последовательности, направленная (МТЗНП напр.)	•	•	RPSB		
81L	81L: Защита минимальной частоты (АЧР)	•	•	FrqPTUF	f<	
	Пуск по углу	•	•			
	Реле направления мощности (РНМ)	•	•			
	Блокировка по сумме токов (SCB)	0	•			
	ABP				•	
25	25: Контроль синхронизма (КС)	•	•	RSYN	SYNC	
27/27S	27/27S: Защита минимального напряжения (3MH)	•	•	PTUV	U<	
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	PHPTOC	I>	
59	59: Защита от повышения напряжения (ЗПН)	•	•	PTOV	V>	
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	•	ZCPTOV		
	ВНР		Į l		1	
25	25: Контроль синхронизма (КС)	•	•	RSYN	SYNC	
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	PHPTOC	I>	
59	59: Защита от повышения напряжения (ЗПН)	•	•	PTOV	V>	
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	•	ZCPTOV		
	Общие		· ·			
52	52: Управление, контроль и мониторинг выключателя	•	•	XCBR	CB	
60 VTS	Блокировка при неисправности в цепях напряжения (БНН)	•	•	RVTR	VTS	
60 CTS	Контроль цепей тока (КЦТ)	•	•	SCTR	CTS	
	Быстродействующий автоматический ввода резерва (БАВР)	•	•	ABTS		
	Автоматический ввод резерва (АВР)	•	•	ABTS		
	Восстановление нормального режима (ВНР)	•	•	ANSR		
	Управление УКРМ	•	•			
	Ручной АВР	•	•			
	Ручной ВНР	•	•			

Таблица 1.2.12. Сводная таблица защит по используемому типу устройства (терминал АВР)

Код	Полное		Тип	МЭН	
ANSI	наименование	1	2	61850	60617
	ABP				•
25	25: Контроль синхронизма (КС)	•	•	RSYN	SYNC
27/27S	27/27S: Защита минимального напряжения (ЗМН)	•	•	PTUV	U<
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	PHPTOC	I>
59	59: Защита от повышения напряжения (ЗПН)	•	•	PTOV	V>
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	•	ZCPTOV	
	ВНР				
25	25: Контроль синхронизма (КС)	•	•	RSYN	SYNC
50/51	50/51: Максимальная токовая защита (МТЗ)	•	•	PHPTOC	I>
59	59: Защита от повышения напряжения (ЗПН)	•	•	PTOV	V>
59N	59N: Защита от повышения напряжения нулевой последовательности (ЗПННП)	•	ZCPTOV		
	Общие				
52	52: Управление, контроль и мониторинг выключателя	•	•	XCBR	CB
60 VTS	Блокировка при неисправности в цепях напряжения (БНН)	•	•	RVTR	VTS
60 CTS	Контроль цепей тока (КЦТ)	•	•	SCTR	CTS
	Автоматический ввод резерва (АВР)	•	•	ABTS	
	Восстановление нормального режима (ВНР)	•	•	ANSR	
	Управление УКРМ	•	•		
	Ручной ABP	•	•		
	Ручной ВНР	•	•		

1.2.1.2. Потребляемая мощность по цепям указана в Таблице 1.2.13.

Таблица 1.2.13. Потребляемая мощность

Потребляемая мощность					
По цепям переменного напряжения, ВА/фазу, не более	0,5				
По цепям переменного тока в симметричном режиме, ВА/фазу, не более:					
• при $I_{HOM} = 0.2 \text{ A};$	0,01				
• при <i>I_{HOM}</i> = 1 A;	0,06				
• при $I_{HOM} = 5$ A.					
По цепям напряжения оперативного тока, Вт, не более:					
• терминал в номинальном режиме с отключенным дисплеем;	5				
• терминал в номинальном режиме с включенным дисплеем;	6				
• терминал в режиме срабатывания выходных реле и включенным дисплеем.					
По цепям дискретных входов, Вт, не более:					
• каждый дискретный вход.	0,77				

1.2.2. Допустимые условия работы

- 1.2.2.1. Вид климатического исполнения устройства и категория размещения УХЛ 3.1 по ГОСТ 15150-69.
- 1.2.2.2. В соответствии с ГОСТ 15150-69 и ГОСТ 15543.1-89 для климатического исполнения УХЛ 3.1, устройство предназначено для работы в следующих условиях:
 - высота над уровнем моря не более 2000 м;
 - верхнее предельное рабочее значение температуры окружающего воздуха плюс 45 °C;
 - нижнее предельное рабочее значение температуры окружающего воздуха минус 10 °C без выпадения инея и росы (влаги);
 - верхнее рабочее значение относительной влажности воздуха не более 98 % при 25 °C;

- окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, агрессивных газов и паров в концентрациях, разрушающих изоляцию и металлы;
- место установки устройства должно быть защищено от попадания брызг воды, масел, эмульсий, а также от прямого воздействия солнечной радиации;
- атмосфера типа II (промышленная).
- 1.2.2.3. Степень загрязнения 1 по ГОСТ IEC 61439-1-2013 загрязнение отсутствует или имеется только сухое, не проводящее загрязнение.
- 1.2.2.4. В части воздействия факторов внешней среды устройство удовлетворяет требованиям группы механического исполнения М43 по ГОСТ 17516.1-90. При этом уровень вибрационных нагрузок от 1 до 100 Гц с ускорением 1 g. Устройство выдерживает многократные ударные нагрузки длительностью от 2 до 20 мс с максимальным ускорением 3 g, однократные ударные нагрузки длительностью от 2 до 20 мс с максимальным ускорением 10 g.

Устройства сейсмостойки при воздействии землетрясений интенсивностью 9 баллов по MSK-64 и уровне установки над нулевой отметкой до 10 м по ГОСТ 30546.1-98.

1.2.2.5 Устройство имеет исполнение оболочки со степенью защиты с лицевой панели IP54, с задней стороны – IP 20 по ГОСТ 14254-2015.

1.2.3. Сопротивление и электрическая прочность изоляции

1.2.3.1. Сопротивление изоляции всех независимых цепей устройства, кроме портов последовательной связи, относительно корпуса и всех независимых цепей между собой в холодном состоянии составляет не менее 100 МОм.

Примечание: Характеристики и параметры устройства, приводимые в тексте без особых замечаний, соответствуют температуре окружающего воздуха (20 ± 5) °C, относительной влажности $(45 \div 80)$ %, номинальной частоте переменного тока 50 Γ μ и номинальному напряжению оперативного тока.

В состоянии поставки электрическая изоляция между всеми независимыми цепями устройства относительно корпуса и всех независимых цепей между собой, кроме портов последовательной связи, выдерживает без пробоя и перекрытия испытательное напряжение $2000~\mathrm{B}$ (эффективное значение) переменного тока частоты $50~\mathrm{\Gamma}$ ц в течение $1~\mathrm{muh}$. При повторных испытаниях напряжение тестирования не должно превышать $85~\mathrm{\%}$ от указанного значения.

- 1.2.3.2. Электрическая изоляция между всеми независимыми цепями устройства относительно корпуса и всех независимых цепей между собой, кроме портов последовательной связи, выдерживает без повреждений три положительных и три отрицательных импульса испытательного напряжения (при работе источника сигнала на холостом ходу), имеющих:
 - амплитуду не менее 5,0 кВ;
 - длительность переднего фронта $(1,20 \pm 0,36)$ мкс;
 - длительность заднего фронта $-(50 \pm 10)$ мкс.
 - длительность интервала между импульсами не менее 5 с.

1.2.4. Цепи оперативного питания

Питание устройства в зависимости от исполнения осуществляется от цепей оперативного постоянного, переменного или выпрямленного переменного тока. Микроэлектронная часть устройств гальванически отделена от источника оперативного тока.

- 1.2.4.1. Рабочий диапазон напряжения оперативного постоянного/переменного тока $-140 \div 265$ В. Уровень срабатывания дискретных входов приведен в 1.2.6.5.
- 1.2.4.2. При питании от источника постоянного напряжения допускается наличие синусоидальной составляющей с амплитудой до 15~% от среднего значения и имеющей частоту второй гармоники промышленной частоты.
- 1.2.4.3. При включении терминала величина импульса тока составляет не более 2 А в течение 1 мс.

Примечание: В цепи питания терминала рекомендуется использовать автомат с отсечкой не менее 2A (рекомендуется использовать автоматические выключатели с номинальным током 2A и более, BTX «C»).

- 1.2.4.4 Максимальное время срабатывания МТЗ при одновременной подаче тока повреждения и напряжения номинального оперативного питания не превышает 0,6 с.
- 1.2.4.5 Устройство сохраняет заданные параметры, надежное функционирование по заданным алгоритмам после перерывов питания любой длительности.

Длительность однократных перерывов питания без перезапуска устройства, с последующим его восстановлением, в условиях отсутствия требований к срабатыванию защиты – до 700 мс, при условии исходного номинального режима «=220В».

После перерывов питания любой длительности обеспечивается надежное функционирование устройства согласно заданным алгоритмам, а также сохраняются следующие параметры:

- уставки и конфигурация устройств;
- осциллограммы аварийных процессов;
- параметры аварийных событий;
- состояние светодиодов сигнализации.
- 1.2.4.6 Контакты выходных реле терминала не замыкаются ложно при подаче и снятии напряжения оперативного постоянного тока с перерывом любой длительности.
- 1.2.4.7 Контакты выходных реле терминала не замыкаются ложно, а аппаратура защиты не повреждается при подаче напряжения оперативного постоянного тока обратной полярности.

1.2.5. Цепи переменного тока и напряжения

1.2.5.1. Аналоговые входные цепи устройства имеют гальваническую развязку от внутренних цепей с помощью промежуточных трансформаторов тока и/или напряжения.

Примечание: В случае подключения поясов Роговского гальваническая развязка по данным цепям отсутствует.

- 1.2.5.2. Рабочий диапазон по цепям переменного тока от 0,1 A до $200~A~(I_A,I_B,I_C)$ и от 0,05 A до $60~A~(I_N)$, по цепям переменного напряжения от 3~B~до 243~B~(420~B~ линейное), по цепям поясов Роговского от 1~ мВ до 10~B.
- 1.2.5.3. Цепи переменного тока длительно выдерживают 32 А и кратковременно 200 А в течение 1 с.
- 1.2.5.4. Термическая стойкость цепей напряжения, подключаемых к обмоткам трансформатора напряжения, обеспечивается при напряжении 243 В длительно и 420 В в течение 10 с.
- 1.2.5.5. Критическое напряжение цепей предназначенных для подключения поясов Роговского составляет 16 В.

1.2.6. Характеристики дискретных входов

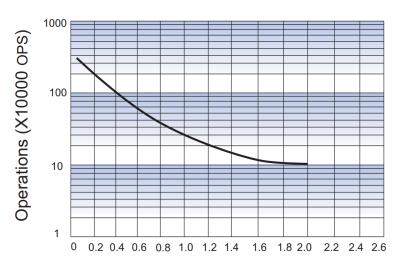
1.2.6.1. Входные дискретные цепи предназначены для работы на постоянном/переменном оперативном токе. Номинальное значение напряжения входных сигналов составляет 220 В. Параметрирование рода тока задается в настройках терминала.

Примечание: При выборе постоянного оперативного питания уровень пульсаций должен быть менее 1440 мВ (размах) в полосе частот от 100 Гц до 20 МГц.

1.2.6.2. В случае подачи выпрямленного не сглаженного напряжения необходимо с помощью сервисного ПО «MIRAPS» установить переменное оперативное питание (за исключением терминалов серии БАВР), в противном случае дискретные сигналы могут некорректно обрабатываться и высветится сигнал о неправильном выборе оперативного питания.

- 1.2.6.3. При подаче номинального напряжения 220 В величина импульса тока составляет не менее 30 мА в течение не менее 10 мс. В дальнейшем дискретный вход устройства потребляет 3,5 мА.
- 1.2.6.4. Длительно допустимое напряжение дискретного входа составляет 300 В постоянного тока.
- 1.2.6.5. Уровень напряжения надежного срабатывания входных дискретных цепей управления устройства составляет не менее $0.75~\mathrm{U_{HOM}}$ (165 B) постоянного тока.
- 1.2.6.6. Времена срабатывания и возврата каждой входной дискретной цепи регулируются в диапазоне от 0 до 20 мс, с шагом 1 мс с помощью сервисного ПО «MIRAPS».

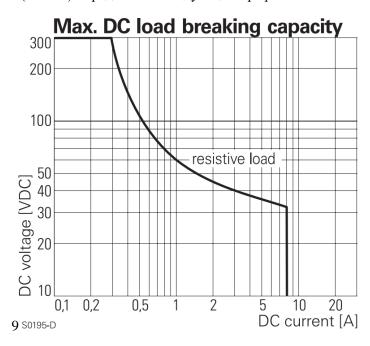
Примечание: По умолчанию на всех дискретных входах установлены задержки времени, равные 5 мс на срабатывание и 5 мс на возврат.


Исключение: для терминалов «БАВР» задержка времени на всех дискретных входах <math>-0 мс.

1.2.7. Характеристики выходных реле

1.2.7.1. Контакты быстродействующих выходных реле (**SO**) имеют коммутационную способность в цепях постоянного тока напряжением 220 B на размыкание 0.15 A. Максимальное коммутируемое напряжение постоянного/переменного тока -300 B, максимальная мощность -45 BA.

1.2.7.2. Контакты выходных сигнальных реле - **O** (HF118F) блоков дискретного ввода/вывода, действующие во внешние цепи переменного тока при напряжении до 250 B, способны коммутировать токи до 10 A, максимальная мощность – 2500 BA. Коммутирующая способность в цепях переменного тока определяется следующим графиком¹:


Breaking Capacity (kVA)

Коммутационную способность в цепях постоянного тока напряжением $220~\mathrm{B}$ на размыкание резистивной нагрузки $0.15~\mathrm{A}$ до 300~000 раз и $0.3~\mathrm{A}$ до 200~000 раз.

Собственные времена срабатывания выходных сигнальных реле составляют не более 10 мс, быстродействующих – не более 2 мс.

1.2.7.3. Контакты выходного реле - **WD** и **NOC** (RY611) «Неисправность» (WatchDog) способны коммутировать AC токи до 8 A, максимальная мощность – 2000 BA. Максимальное коммутируемое напряжение постоянного тока – 300 B, максимальная мощность – 90 BA.

1.2.7.4. При переключении постоянного тока, коммутирующая способность зависит от подаваемого напряжения и для реле (RY611) определяется следующим графиком²:

¹ International Rectifier. Series PVA33N.

_

² TE Connectivity. General Purpose Relays PCB Relays. RY611.

- 1.2.7.5. Отключающая способность индуктивной нагрузки определяется согласно ГОСТ IEC 961810-1, таблица В.2.
 - На переменном токе: $\cos = 0.3$ (L/R = 0,001, при частоте сигнала 50 Γ ц).
 - На постоянном токе: $T_{0.95} = 6 * P$.

Примечание: Величина «6*P» получена из эмпирического соотношения и подходит для большинства индуктивных нагрузок постоянного тока до P=50 Вт, где 6*P=300 мс. Нагрузки с номинальной мощностью более 50 Вт состоят из небольших параллельных нагрузок. Таким образом, 300 мс это верхний предел, независимый от величины энергии.

1.2.7.6. Контакты силовых быстродействующих выходных реле - **PSO** (МТ14ПТА-2,5-4-ПП1) способны коммутировать токи до 2,5 А в цепях постоянного тока напряжением 220 В.

1.2.8. Электромагнитная совместимость

- 1.2.8.1. Устройство сохраняет работоспособность и функционирование без ухудшения качества выполняемых функций при воздействии нижеперечисленных помех с критерием качества функционирования А.
- 1.2.8.2. Устройство устойчиво к воздействию электростатического разряда (степень жесткости -3) с испытательным напряжением импульса разрядного тока по ГОСТ 30804.4.2-2013:
 - контактный разряд
- 6 кВ, 150 пФ;
- воздушный разряд
- 8 кВ, 150 пФ.
- 1.2.8.3. Устройство устойчиво к воздействию радиочастотного электромагнитного поля напряженностью 10 B/m (степень жесткости 3) по Γ OCT 30804.4.3-2013.
- 1.2.8.4. Устройство устойчиво к воздействию магнитного поля промышленной частоты напряженностью 100~A/M непрерывное магнитное поле; 1000~A/M кратковременное магнитное поле (степень жесткости 5) по ГОСТ IEC 61000-4-8-2013.
- 1.2.8.5. Устройство устойчиво к воздействию импульсного магнитного поля с напряженностью 1000 A/m (степень жесткости -5) по ГОСТ IEC 61000-4-9-2013, возникающего в результате разрядов молний или коротких замыканий в первичной сети.
- 1.2.8.6. Устройство устойчиво к воздействию затухающего колебательного магнитного поля напряженностью 100 A/m (степень жесткости -5) по ГОСТ IEC 61000-4-10-2014.
- 1.2.8.7. Устройство устойчиво к наносекундным импульсным помехам (степень жесткости 4) с амплитудой испытательных импульсов 4 кВ, длительностью фронта/длительностью импульса 5/50 нс по ГОСТ 30804.4.4-2013.
- 1.2.8.8. Устройство устойчиво к микросекундным импульсным помехам большой энергии импульсы напряжения/тока длительностью 1/50 и 6,4/16 мкс по ГОСТ Р 51317.4.5-99. Амплитуда напряжения испытательного импульса:
 - входные аналоговые, входные и выходные дискретные цепи, цепи питания по схеме «провод-земля» 4 кВ (степень жесткости 4), по схеме «провод-провод» 2 кВ через устройство развязки (степень жесткости 3);
 - порты связи RS-485, Ethernet на экраны кабелей по схеме «провод-земля» 1 кВ (степень жесткости 1).
- 1.2.8.9. Устройство устойчиво к кондуктивным помехам, наведенным радиочастотными электромагнитными полями с уровнем напряжения 10 В по ГОСТ Р 51317.4.6-99 (степень жесткости 3).
- 1.2.8.10. Устройство устойчиво к динамическим изменениям напряжения электропитания в виде провалов напряжения питания, кратковременных перерывов и несимметрии питающего напряжения по ГОСТ 30804.4.11-2013. Значение изменения напряжения составляет:
 - не менее 0,2 U_{пит} при длительности провала 5000мс;
 - не менее 0,3 Uпит при длительности провала 500 мс;
 - не менее 0,6 Uпит при длительности провала 200 мс;
 - не менее Uпит при длительности провала 20 мс;
 - длительность перерывов напряжения не менее 500 мс.
- 1.2.8.11. Устройство устойчиво к колебательным затухающим помехам по ГОСТ IEC 61000-4-12 (степень жесткости 3). Амплитуда напряжения испытательного импульса одиночных колебательных помех по схеме «провод-земля» составляет 4 кВ, по схеме «провод-провод» 2 кВ, повторяющихся колебательных помех по схеме «провод- земля» составляет 2,5 кВ, по схеме «провод-провод» 1 кВ.

- 1.2.8.12. Устройство устойчиво к кондуктивным помехам при частоте $50~\Gamma$ ц с уровнем напряжения 30~B длительно и 100~B кратковременно в течение 1~c (степень жесткости 4) по Γ OCT P 51317.4.16-2000.
- 1.2.8.13. Устройство устойчиво к воздействию гармонической составляющей напряжения питания с амплитудой до 15 % по ГОСТ 30804.4.13-2013.
- 1.2.8.14. Устройство устойчиво к воздействию ступенчатых изменений напряжения питания в пределах $\pm~20~\%$ от номинального напряжения питания (степень жесткости специальная) по ГОСТ Р 51317.4.14-2000.
- 1.2.8.15. Устройство устойчиво к воздействию пульсаций напряжения питания в пределах \pm 15 % от номинального напряжения питания (степень жесткости 3) по ГОСТ Р 51317.4.17-2000.
- 1.2.8.16. Устройство устойчиво к изменению частоты напряжения питания в пределах \pm 15 % от номинальной частоты (степень жесткости 3) по ГОСТ Р 51317.4.28-2000.
- 1.2.8.17. Устройство устойчиво к динамическим изменениям напряжения электропитания постоянного тока в виде провалов напряжения питания, кратковременных перерывов по МЭК 61000-4-29-2016. Значение изменения напряжения составляет не менее $0.3~U_{\Pi I I I}$ при длительности провала 1000~Mc; не менее $0.6~U_{\Pi I I I}$ при 100~Mc; длительность перерывов напряжения не менее 500~Mc.
- 1.2.8.18. Напряжения индустриальных радиопомех, создаваемые устройством (класс А) в цепи питания соответствуют значениям, указанным по ГОСТ 30805.22-2013.

1.2.9. Надежность

- 1.2.9.1. Надежность функционирования устройства обеспечивается программно-аппаратными методами с использованием необходимых методов резервирования выполняемых функций. Устройство постоянно производит самодиагностику аппаратной и программной части, контролируя предусмотренные при этом параметры. При выявлении устойчивой неисправности терминал формирует сигнал неисправности с указанием причины.
- 1.2.9.2. Средняя наработка на отказ сменного элемента составляет не менее 125 000 ч.
- 1.2.9.3. Среднее время восстановления работоспособного состояния устройства при наличии полного комплекта запасных блоков составляет не более 0,5 ч с учетом времени нахождения неисправности.
- 1.2.9.4. Полный средний срок службы устройства составляет не менее 25 лет при условии проведения требуемых технических мероприятий по обслуживанию с заменой при необходимости, материалов и комплектующих, имеющих меньший срок службы.
- 1.2.9.5. Средний срок службы блоков до капитального ремонта составляет не менее 10 лет.
- 1.2.9.6. Вероятность отказа в срабатывании за год составляет не более 10^{-6} согласно ГОСТ Р 27.607-2013.
- 1.2.9.7. Параметр потока ложных срабатываний составляет не более 10^{-6} ч согласно ГОСТ Р 27.607-2013.

1.3. Состав изделия

1.3.1. Конструктивное исполнение

1.3.1.1. Конструктивно терминал представляет собой кассету блочно-унифицированной конструкции. Предусмотрен утопленный способ монтажа.

Утопленный монтаж применяется при размещении терминала на двери релейного отсека ячейки КРУ или на панели шкафа защит с задним подсоединением проводников вторичных цепей. Габаритные, установочные размеры, масса терминала, внешний вид и расположение элементов управления на лицевой панели приведены в **Приложении 2**. Схемы подключения трансформаторов тока и напряжения, а также дискретных цепей представлены в **Приложении 3**. Обозначения контактов портов связи приведены в **Приложении 4**.

- 1.3.1.2. В состав терминала входят следующие блоки:
 - блок питания;
 - блоки трансформаторов;
 - блоки дискретного ввода/вывода;
 - материнская плата;
 - блок индикации;
 - блок объединительный.

Электрическое соединение между блоками производится с помощью объединительной кросс-платы (блока объединительного).

1.3.1.3. На лицевой панели располагаются:

- светодиодные индикаторы;
- графический экран (дисплей);
- кнопки управления.

Разъемы Ethernet и портов USB расположены на передней и задней частях терминала.

Примечание: Возможность изготовления лицевой панели терминала в выносном или стационарном исполнении уточняйте у производителя.

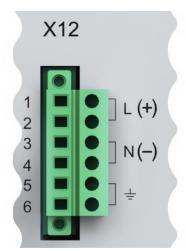
1.3.1.4. На задней панели устройства располагаются клеммные колодки для подключения к измерительным цепям, разъемные соединения для подключения к цепям питания, сигнальным цепям, а также разъемы портов связи с АСУ ТП и болт (винт) для заземления устройства.

Клеммные колодки обеспечивают присоединение проводников сечением 4 мм².

Разъемные соединения обеспечивают присоединение проводников сечением 2,5 мм².

Контактные соединения терминала соответствуют классу 2 по ГОСТ 10434-82.

- 1.3.1.5. Конструкция терминала обеспечивает воздушные зазоры и длину пути утечки между контактными выводами терминала и корпусом не менее 3 мм по воздуху и 4 мм по поверхности.
- 1.3.1.6. В соответствии с ГОСТ IEC 61439-1-2013 в терминале обеспечивается непрерывность цепи защитного заземления. При этом электрическое сопротивление, измеренное между винтом для заземления терминала и любой заземляемой металлической частью, не превышает 0,1 Ом.


1.4. Устройство и работа

1.4.1. Устройство и работа составных частей

1.4.1.1. Терминал выполнен в виде программируемого логического контроллера, имеющего в качестве ядра материнскую плату, которая обеспечивает взаимодействие между всеми входящими в состав терминала блоками.

1.4.1.2. Питание терминала

Питание осуществляется как от источника постоянного, так и от источника переменного тока в диапазоне напряжений 140÷265 В. Оперативное питание терминала осуществляется через контакты X12:1(2), X12:3(4). Назначение контактов разъема приведено в Таблице 1.4.1.

Рис. 1.4.1. Контакты разъема X12 для подключения цепей питания

Таблица 1.4.1. Назначение контактов разъема X12

Контакт	Назначение	
1	Фаза	
2	Фаза	
3	Нейтраль	
4	Нейтраль	
5	Защитное заземление	
6	Защитное заземление	

Примечание: Характеристики цепей оперативного тока приведены в 1.2.4, дискретных входов в 1.2.6, выходных реле в 1.2.7.

1.4.1.3. Блок дискретного ввода/вывода

Блок дискретного ввода/вывода предназначен для приема дискретных сигналов.

Дискретные входы/выходы выведены на соответствующие разъемы (Приложение 3); имеются входы, которые гальванически связаны между собой. Сигнальных реле типа WatchDog (WD) находятся на разъеме Х14.

Примечание: Характеристики дискретных входов приведены в 1.2.6, выходных реле в 1.2.7. 1.4.1.4. Блок подключения аналоговых сигналов

Блок содержит промежуточных трансформатора тока и промежуточных трансформаторов

напряжения. Первичные обмотки трансформаторов тока выведены на разъем X1(2,3).1, трансформаторов напряжения — на разъем X1(2,3).2.

Обмотки промежуточных трансформаторов тока предназначены для подключения к измерительным токовым цепям с номинальным значением (I_{HOM}) 5 A либо 1 A.

Примечание: В случае подключения поясов Роговского, промежуточные трансформаторы отсутствует.

Обмотки трансформаторов напряжения предназначены для подключения к цепям с номинальным значением напряжения (U_{HOM}) 100/380 В.

Примечание: Характеристики цепей переменного тока и напряжения приведены в 1.2.5.

1.4.1.5. Материнская плата

Материнская плата является центральным блоком и содержит:

- центральный процессор;
- оперативную память;
- постоянную память;
- часы реального времени;
- порты связи согласно 1.4.1.7.

Блок логики предназначен для сбора и окончательной обработки данных аналоговых и дискретных сигналов, выдачи управляющих воздействий на выходные реле и другие устройства посредством цифровых каналов связи. К функциям блока также относится ведение учета текущего времени, синхронизация с источником глобального времени, запись и хранение осциллограмм аварийных режимов, поддержка ЧМИ, самодиагностика всего терминала с принятием решения о выводе из работы, обеспечение информационного обмена с АСУ ТП.

Программы защиты, уставки измерительных органов и конфигурация устройства, осциллограммы и события хранятся на карте памяти типа – MicroSD.

По часам реального времени фиксируется время регистрируемых событий. Погрешность часов реального времени составляет не более 1 с в сутки. При отключении питания в блоке логики для питания часов используется резервный источник.

1.4.1.6. Блок индикации

Блок индикации содержит светодиоды, экран, кнопки управления, которые располагаются на лицевой панели терминала (Приложение 2) и образуют ЧМИ.

Экран представляет собой ЖК-дисплей диагональю 14,2 см 640x480 RGB.

Назначение кнопок управления приведено в 2.4.2.

Порт связи USB 2.0 (разъем типа A) описан в 1.4.1.7.

Примечание: Лицевая панель может быть выполнена в выносном исполнении.

1.4.1.7. Информационные порты и интерфейсы связи

1.4.1.7.1. Связь с АСУ и системой мониторинга подстанции осуществляется в соответствии со стандартами Modbus RTU и Modbus TCP/IP – набор стандартов: Modbus Application Protocol V1.1b, содержащий спецификацию прикладного уровня, и Modbus over serial line V1.0, содержащий спецификацию канального и физического уровней.

Синхронизация часов реального времени терминала осуществляется с помощью протокола SNTP. 1.4.1.7.2. На задней панели находится порт связи USB 2.0 (разъем типа В), который предназначен для подключения компьютера через стандартный кабель USB 2.0 A-B. Через этот порт осуществляется конфигурирование и параметрирование устройства, а также обновление ПО устройства.

Внимание! При обновлении программного обеспечения не отключайте питание терминала до полного завершения процесса (рекомендуемое время – 2 минуты).

На задней панели терминала также имеются порты связи RS-485 и Ethernet, предназначенные для подключения устройства в АСУ ТП. Через эти порты связи также можно осуществлять конфигурирование и параметрирование устройства.

В Таблице 1.4.2 приведены интерфейсы портов связи.

Таблица 1.4.2. Обозначения разъемов на задней панели

Обозначение раз	ьема на задней панели	Исполнение интерфейса
RS-485		RS-485-1
NO-463		RS-485-2
	МИР 50	Ethernet-1 100 Base-T
	WIFIF 30	Ethernet-2 100 Base-T
Ethernet		Ethernet-1 100 Base-T (сервисный*)
	МИР 100, 200, 300	Ethernet-2 100 Base-T
		Ethernet-3 100 Base-T*
USB B		USB 2.0

^{*}Примечание: Сервисный порт не предназначен для использования в каких-либо сетях АСУ ТП. Он может применять только для конфигурирования терминала при прямом подключении к ПК..

Скорость передачи составляет для портов с интерфейсом:

- 100 Base-T Ethernet до 100 Мбит/с;
- RS-485 (ACУ) до 0,2 Мбит/с;
- USB Full-Speed до 12 Мбит/с.

Обозначения разъемов портов связи приведены в Приложении 4.

Все данные терминала сохраняются на карте памяти типа – MicroSD, слот для которой находится на задней панели.

- 1.4.1.7.3. На передней панели терминала имеется порт связи USB A для подключения внешнего накопителя типа USB Flash Drive.
- 1.4.1.7.4.В терминале реализован доступ к файловой системе через протокол FTP, который осуществляется через порт Ethernet на задней панели. Поддерживается исключительно анонимный вход, при котором предоставляется доступ только на чтение.

Через сервисное ПО можно подключить к терминалу используя любой физический интерфейс.

1.4.1.7.5. Назначение и технические данные портов

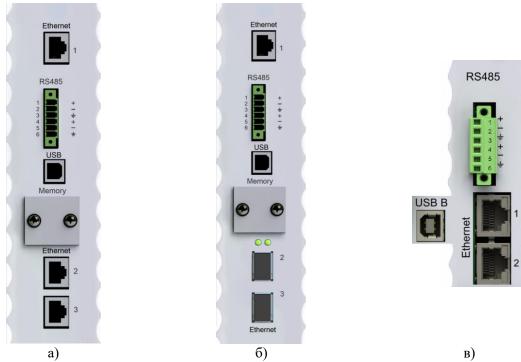


Рис. 1.4.2. Порты связи для «МИР 100/200/300» а) с тремя ТХ; б) с одним ТХ и двумя FX; для «МИР 50» в) с двумя ТХ

1.4.1.7.5.1.Порт с интерфейсом на задней панели Ethernet 100 Base-T

Исполнение порта с интерфейсом Ethernet 100 Base-T используется для подключения терминала в локальную вычислительную сеть предприятия по линии связи на основе витой пары. Технические данные порта приведены в Таблице 1.4.3, назначение контактов разъема приведено в Таблице 1.4.4.

Таблица 1.4.3. Технические данные порта

Параметр	Значение
Тип разъема	RJ45
Максимальное расстояние передачи	До 100 м

Таблица 1.4.4. Назначение контактов разъема

Контакт	Сигнал	Назначение
1	D1 +	Передача положительного сигнала терминалом
2	D1 -	Передача отрицательного сигнала терминалом
3	D2 +	Прием положительного сигнала терминалом
4	D3 +	Не используется
5	D3 -	Не используется
6	D2 -	Прием отрицательного сигнала терминалом
7	D4 +	Не используется
8	D4 -	Не используется

Внимание! При подключении ПК к терминалу через порты Ethernet для корректной работы в настройках подключения необходимо задать все параметры подсети, включая параметр «Основной шлюз».

1.4.1.7.5.2.Порт с интерфейсом на задней панели Ethernet 100 Base-FX

Исполнение порта с интерфейсом Ethernet 100 Base-FX используется для подключения терминала в локальную вычислительную сеть предприятия по линии связи на основе волоконно-оптического кабеля. Используемый тип оптического порта SFP. Совместимое оптоволокно 1310 нм SMF.

1.4.1.7.5.3. Порт с интерфейсом RS-485

Исполнение порта с интерфейсом RS-485 используется для организации полудуплексного обмена информацией с терминалами по двухпроводной линии связи на основе витой пары. Данный способ связи рекомендуется применять при сравнительно небольшом количестве устройств на простых объектах, когда использование оптоволоконного кабеля экономически нецелесообразно. Назначение контактов разъема порта с интерфейсом RS-485 приведено в Таблице 1.4.5.

Таблица 1.4.5. Назначение контактов разъема

Контакт	Сигнал	Назначение
1	DATA +	Положительный вход/ выход данных
2	DATA -	Отрицательный вход/ выход данных
3	COMMON	Сигнальное заземление
4	DATA +	Положительный вход/ выход данных
5	DATA -	Отрицательный вход/ выход данных
6	COMMON	Сигнальное заземление

Технические данные порта приведены в Таблице 1.4.6.

Таблица 1.4.6. Технические данные порта

Параметр	Значение
Тип разъема	15EDGKAM-3.5-06P
Прочность изоляции	1500 B RMS (1 мин)
Количество устройств в линии	До 32
Полная длина линии связи	До 1200 м

Типовая схема соединения предусматривает параллельное подключение терминалов к линии связи произвольной топологии с учетом ограничений, указанных в Таблице 1.4.6.

Работа порта обеспечивается двухпроводной схемой соединения одноименных контактов, однако при больших длинах линии связи для обеспечения выравнивания потенциалов сигнальной земли рекомендуется использовать защитный экран кабеля в качестве третьего проводника. Кроме того, для уменьшения отражений сигнала в длинной линии и повышения помехоустойчивости, по концам линии связи должны устанавливаться терминирующие резисторы. Номинал терминирующего резистора должен равняться волновому сопротивлению используемого кабеля, типовое значение для витой пары — 120 Om.

1.4.2. Основные параметры защит и ИО

1.4.2.1. Коэффициенты возврата ИО

Значения основных коэффициентов возврата измерительных органов (ИО) приведены в Таблице 1.4.7. Значения коэффициентов для каждой защиты приведены в АПДЛ.656121xxx* РЭ2 «Руководство оператора».

*Примечание: Шифр, соответствующий определенному типу устройства.

Таблица 1.4.7. Коэффициенты возврата ИО

Параметр	Значение	
Коэффициент возврата максимальных ИО тока и напряжения, не менее	0,9	
Коэффициент возврата минимальных ИО тока и напряжения, не более	1,1	

1.4.2.2. Времена срабатывания и возврата ИО

Время срабатывания (возврата) максимальных (минимальных) ИО тока и напряжения не превышает 30 мс при подаче соответствующего 3 I_{CPAB} или 3 U_{CPAB} и не превышает 40 мс при подаче 1,2 I_{CPAB} .

Время возврата (срабатывания) максимальных (минимальных) ИО тока и напряжения не превышает 35 мс при сбросе входного тока от 10 I_{СРАБ} до нуля или напряжения от 3 U_{СРАБ} до нуля.

Время срабатывания токовых ИО УРОВ не превышает 35 мс при подаче 2 $I_{\text{СРАБ}}$, время возврата при сбросе входного тока от 30 $I_{\text{НОМ}}$ до нуля – 40 мс.

Время срабатывания (возврата) максимальных (минимальных) ИО, реагирующих на изменение частоты, не превышает 120 мс.

Время возврата (срабатывания) всех ИО, реагирующих на скорость изменения частоты, не превышает 150 мс.

Средняя основная относительная погрешность по независимой выдержке времени защит не превышает 30 мс.

Внимание! Значения выдержек времени представляют собой чистые времена, которые не включают времена работы измерительного органа, пуска защиты, работы логической схемы и срабатывания выходного реле.

1.4.2.3. Погрешности измерительных органов

1.4.2.3.1. Реле направления мощности (орган направления мощности)

Средняя основная погрешность PHM по току и напряжению срабатывания не превышает $\pm~10$ % от уставки.

Средняя основная абсолютная погрешность PHM по углу максимальной чувствительности не превышает \pm 5 $^{\circ}$.

Дополнительная погрешность PHM по току и напряжению срабатывания при изменении температуры окружающего воздуха в рабочем диапазоне температур не превышает \pm 5 % от среднего значения, измеренного при температуре (20 ± 5) °C.

Дополнительная погрешность PHM по току и напряжению срабатывания при изменении частоты в диапазоне от 45 до 55 Γ ц не превышает \pm 10 % от среднего значения, измеренного при номинальной частоте.

1.4.2.3.2.ИО тока и напряжения

Средняя основная погрешность по току (напряжению) срабатывания токовых ИО (напряжения, кроме ИО напряжения третьей гармоники) не превышает \pm 3 % от уставки.

Средняя основная погрешность ИО напряжения третьей гармоники не превышает ± 5 %.

Дополнительная погрешность по току (напряжению) срабатывания ИО тока (напряжения) при изменении температуры окружающего воздуха в рабочем диапазоне температур не превышает \pm 5 % от среднего значения, измеренного при температуре (20 ± 5) °C.

Дополнительная погрешность по току (напряжению) срабатывания ИО тока (напряжения) при изменении частоты в диапазоне от 47 до 53 Γ ц не превышает \pm 4 % от среднего значения, измеренного при номинальной частоте.

1.4.2.3.3. ИО частоты

Средняя основная погрешность порога срабатывания ИО частоты не превышает \pm 0,02 Γ ц.

Дополнительная погрешность порога срабатывания ИО частоты при изменении температуры окружающего воздуха в рабочем диапазоне температур не превышает ± 0 ,02 Γ ц от среднего значения, измеренного при температуре (20 ± 5) °C.

1.4.2.3.4. ИО скорости изменения частоты

Средняя основная погрешность порога срабатывания всех ИО скорости изменения частоты не превышает \pm 0,15 Γ ц/с.

Дополнительная погрешность порога срабатывания всех ИО скорости изменения частоты при изменении температуры окружающего воздуха в рабочем диапазоне температур не превышает ± 0.15 Γ ц/с от среднего значения, измеренного при температуре (20 ± 5) °C.

1.4.3. Функции устройства

Терминал выполняет все необходимые функции релейной защиты, автоматики, сигнализации и управления энергообъектов, а также функции измерения, регистрации, осциллографирования и связи согласно заложенному в него программно-аппаратному обеспечению. Схема защиты условно делится на подсхему преобразования аналоговых сигналов, логическую схему и схему конфигурации и позволяет реализовать необходимые вышеуказанные основные и дополнительные функции, которые приведены в АПДЛ.656121ххх РЭ2 «Руководство оператора».

Логическая схема задается на предприятии-изготовителе и имеет гибкий алгоритм, который может быть изменен для конкретного проекта в ходе проектных и пусконаладочных работ. Функциональная логическая схема устройства приведена в АПДЛ.656121xxx РЭ2 «Руководство оператора».

1.4.3.1. Измерения

Подсхема преобразования аналоговых сигналов обеспечивает связь с блоком АЦП, инициализацию, фильтрацию, расчет и выдачу различных измеренных аналоговых величин. В процессе инициализации предусмотрена возможность подстройки значений сигналов входных трансформаторов тока и напряжения по углу. В общем случае, терминал позволяет измерять и рассчитывать значения токов, напряжений, сопротивлений, мощность, энергию, частоту сети, а также амплитуды, действующие значения, фазы, симметричные и аварийные составляющие сигналов с отображением их на дисплее и возможностью передачи по каналам связи. Инструмент графического программирования на персональном компьютере обладает необходимым набором математических функций для расчета всех требуемых величин, а аппаратная платформа позволяет подключать источники тока, напряжения переменного и постоянного тока.

Возможность редактирования коэффициентов заполнения АЦП описана в АПДЛ.656121xxx РЭ2 «Руководство оператора».

Основные технические данные и метрологические характеристики измерительных каналов описаны в 1.2.5.

1.4.3.2. Функции РЗА

В устройстве реализованы различные функции РЗА, описание которых приводится в документе АПДЛ.656121xxx РЭ2 «Руководство оператора».

Устройства обладают необходимым перечнем основных и резервных функций РЗА сигнализации и управления элементами станций и подстанций напряжением 0,4÷110 кВ (более точно по типам устройств указано в разделе 1.1.1) на основе следующих основных функций:

- токовые защиты;
- защита и автоматика с контролем напряжения и мощности;
- автоматика управления выключателем и др;
- синхронная коммутация, в том числе по фазам (для «МИР УСК»).

1.4.3.3. Дискретные входы

Дискретные входы предназначены для приема и обработки внешних сигналов оперативных цепей. Основные технические данные и характеристики дискретных входов приведены в 1.2.6.

При помощи сервисного ПО «**MIRAPS**» осуществляется назначение входов, то есть определенные внутренние переменные могут получать свое логическое значение в соответствии с состоянием назначенного дискретного входа.

1.4.3.4. Выходные реле

Для выдачи дискретных сигналов во внешнюю цепь предусмотрены выходные электромагнитные реле. Основные технические данные и характеристики выходных реле описаны в 1.2.7.

При помощи сервисного ПО «**MIRAPS**» осуществляется назначение выходных реле, то есть полученные в результате логических преобразований значения сигналов выводятся через «сухие» контакты во внешние оперативные цепи. Выходное реле «Неисправность» (WatchDog) не конфигурируется.

1.4.3.5. Светодиодная индикация

Для отображения текущего состояния устройства на лицевой панели (**Приложение 2**) предусмотрены:

- 3 светодиода Питание, Готовность, Неисправность с фиксированным назначением;
- 16 светодиодов общего назначения, часть имеют назначение по умолчанию (подробная информация изложена в АПДЛ.656121xxx РЭ2 «Руководство оператора», раздел Параметрирование матриц).

Режимы работы светодиодов описаны в Таблице 1.4.8.

При помощи инструмента графического программирования можно сконфигурировать режимы работы светодиодов отображения положения коммутационных аппаратов, которые используются при выполнении функций автоматики управления ими.

При помощи сервисного ПО «**MIRAPS**» производится конфигурирование светодиодов общего назначения (**Приложение 2**) в двух режимах свечения на различные логические сигналы. На каждый режим свечения светодиода можно завести один логический сигнал.

Таблица 1.4.8. Режимы работы светодиодов

Наименование светодиода	Режим свечения	Режим работы устройства	
Питание	зеленый	Подано напряжение питания устройства	
Готовность	зеленый	Устройство готово к работе	
Неисправность	красный	Обнаружена устойчивая внутренняя неисправность системой самодиагностики	
Общего	красный	Режимы работы светодиодов задаются при	
назначения	зеленый	конфигурировании	



Рис. 1.4.3. Окно «Редактор ламп» в ПО MIRAPS для светодиодов общего назначения, РЗА тип 1

В блоке имеется возможность инвертирования входных логических сигналов и фиксации состояния светодиода в энергонезависимой внутренней памяти. При подаче напряжения питания светодиоды возвращаются в состояние, зафиксированное до отключения.

Квитирование может производиться кнопкой «С» на лицевой панели терминала, сигналом на дискретный вход терминала или командой из автоматизированной системы управления по каналам связи.

Назначение программируемых светодиодов блока индикации представлено в АПДЛ.656121xxx PЭ2 «Руководство оператора», раздел **Параметрирование матриц**.

1.4.3.6. Управление терминалом

На лицевой панели (Приложение 2) предусмотрены:

- четыре кнопки перемещения по меню;
- одна кнопка подтверждения и одна кнопка отмены команд;
- одна кнопка включения коммутационного аппарата «**I**»*;
- одна кнопка отключения коммутационного аппарата «О»*. Подробнее назначение кнопок пользовательского интерфейса описано в 2.4.2
 - *Примечание: Актуально только для случая с одним выключателем.

1.4.3.7. Осциллографирование

В составе устройства реализован функциональный модуль осциллографирования аварийных режимов, предназначенный для записи аварийного режима с целью последующего анализа. Запись и хранение осциллограмм осуществляется в формате COMTRADE (IEC 60255-24-2013) на карте памяти типа — MicroSD. При помощи сервисного ПО «MIRAPS» (рис. 1.4.4.) задаются параметры осциллографа, которые приведены в Таблице 1.4.9, а также список регистрируемых сигналов. Описание режимов записи приведены в Таблице 1.4.10.

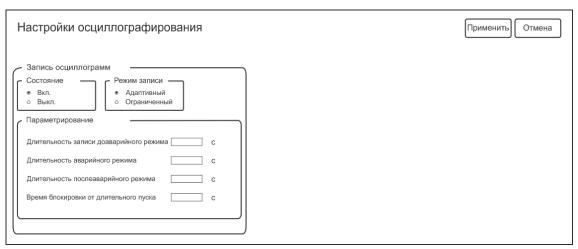


Рис. 1.4.4. Окно вкладки «Настройки осциллографирования» в ПО MIRAPS

Таблица 1.4.9. Параметры осциллографа

Параметр (отображение на ЧМИ)	Диапазон значений	Описание
Режим записи	Ограниченный / Адаптивный	Определяет режим записи
Длительность записи доаварийного режима	От 100 мс*	Длительность записи предшествующего режима (до возникновения условия пуска)
Длительность записи аварийного режима	шаг 1 мс	Длительность записи аварийного режима (после возникновения условия пуска до пропадания условия пуска)
Длительность записи послеаварийного режима	От 500 мс*	Длительность записи послеаварийного режима (после пропадания условия пуска)
Время блокировки от длительного пуска	шаг 1 мс	Максимальное время записи осциллограмм по одному пусковому сигналу
Частота дискретизации	От 500 мс*	Частота выборок сигнала

^{*}Примечание: Суммарное время указанных величин (время доаварийного, аварийного и послеаварийного режимов) не превышает максимальную длительность записи осциллограмм равную 30 с.

Таблица 1.4.10. Режим записи

Режим записи	Характеристика
	Запись осциллограммы происходит в течение выставленного Пользователем
Ограниченный	времени; если по прошествии времени, выставленным Пользователем, авария
	не заканчивается, записывается следующая осциллограмма
	Запись аварийного участка осциллограммы происходит на протяжении всего
Адаптивный	времени пуска осциллографа, но не менее заданной Пользователем длительно-
	сти аварии и не более 30с. Если по прошествии максимального времени, авария
	не заканчивается, записывается следующая осциллограмма

Емкость осциллографа зависит от количества записываемых сигналов. В осциллографе реализована автоматическая функция архивации. Максимальное количество хранимых осциллограмм – не более 100 при использовании карты памяти типа – MicroSD объемом 8 Гб. Запись осциллограмм организована таким образом, что при переполнении памяти или их максимального количества стирается самая старая осциллограмма и на ее место записывается новая. При выполнении условий пуска в осциллограмму записываются все сигналы, состав которых задается с помощью ПО «МІRAPS» в разделе Запись сигналов.

Алгоритм работы осциллографа при разных режимах записи схематично показан на Рисунке 1.4.5.

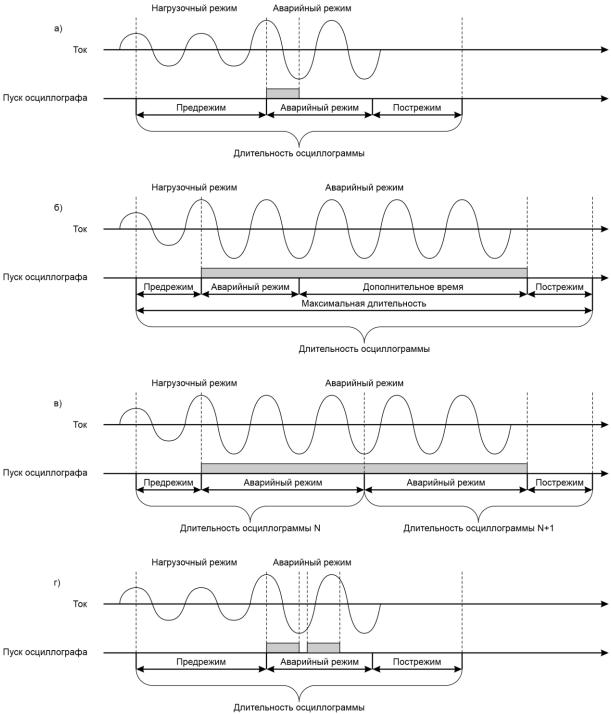


Рисунок 1.4.5. Алгоритм работы осциллографа:

- а) ограниченный режим записи; б) адаптивный режим записи;
 - в) запись дополнительных осциллограмм
 - г) защита от импульсного сигнала пуска

При появлении сигнала пуска в осциллограмму записывается предшествующий режим, длительность которого задается параметром «Длительность записи доаварийного режима». Далее записывается аварийный режим, длительность которого задается параметром «Длительность записи аварийного режима». После окончания аварийного режима запись режима продолжается на время, заданное параметром «Длительность записи послеаварийного режима».

Для записи аварийного режима предусмотрены два режима записи – адаптивный и ограниченный. В ограниченном режиме при возникновении условий пуска осциллографа в осциллограмму гарантированно записывается время аварийного режима (Рисунок 1.4.5. а). Адаптивный режим работает аналогично, с тем лишь отличием, что при превышении времени аварийного режима

осциллограмма продолжает записываться до момента пропадания условий пуска или до достижения общей продолжительности осциллограммы максимальной длительности (Рисунок 1.4.5. б).

При превышении времени аварийного режима осциллограмма разделяется на несколько частей, запись текущей осциллограммы прекращается и начинается запись следующей. При этом доаварийный режим записывается только на первой осциллограмме, а послеаварийный только на последней (Рисунок 1.4.5. в). Для защиты от длительного пуска осциллографа предусмотрена блокировка по длительности пуска сигнала задаваемая переменной «Время блокировки от длительного пуска». При его превышении, запись осциллограммы останавливается.

Также предусмотрена защита от возникновения импульсного сигнала пуска осциллографа. При первичном появлении сигнала пуска начинается запись новой осциллограммы, а запись следующей осциллограммы начнется только после окончания времени аварийного режима текущей (Рисунок 1.4.5. г).

Выгрузка записанных осциллограмм осуществляется через порт связи USB, расположенный на лицевой панели терминала. Также имеется возможность считывания осциллограмм с помощью специализированного ПО «**MIRAPS**» через любой порт Ethernet и USB, расположенные на задней панели терминала.

1.4.3.8. Регистрация

В составе устройства реализован регистратор событий, предназначенный для фиксации меток времени при изменении логических сигналов из <0> в <1> и наоборот для последующего анализа поведения защит, ИО. Точность метки времени -1 мс.

Максимальная емкость регистратора составляет 1000 событий, сохраняемых в энергонезависимой внутренней памяти. Хранение событий организовано таким образом, что при переполнении стирается самое старое событие и на его место записывается новое. Обеспечивается регистрация не менее 256 логических сигналов, состав которых задается при помощи сервисного ПО «МІRAPS».

Все события и их метки времени могут быть просмотрены на ЧМИ терминала, все события могут передаваться в АСУ ТП. Выгрузка журнала событий осуществляется через порт связи USB или любой Ethernet задней панели.

1.4.4. Сервисное программное обеспечение

1.4.4.1. ПО «**MIRAPS**» предназначено для:

- мониторинга терминалов, установленных на энергообъекте;
- просмотра и задания (редактирования) уставок, фиксации изменения уставок и сравнения файлов уставок;
- считывания и просмотра лог файлов;
- считывания и просмотра осциллограмм, осуществления ручного пуска осциллографа, изменения параметров осциллографа;
- мониторинга сигналов (просмотра текущих данных), диагностики каналов связи с устройствами;
- считывания и просмотра журнала регистрации событий;
- конфигурирования сигналов для дискретных входов, выходов, светодиодов, осциллографа, регистратора событий.

Описание работы с программно-техническим комплексом приведено в АПДЛ.656121xxx РЭ2 «Руководство оператора».

1.4.4.2. ПО **«APScilloscope»** предназначено для:

- просмотра файлов аварийных событий, записанных в формате COMTRADE (*.CFG и *.DAT);
- просмотра данных РЗА: расчетных сигналов и изображений сигналов на годографе, векторной и частотной диаграммах;
- просмотра осциллограмм как отдельных, так и объединенных;
- создания автоматических отчетов о работе БАВР;
- группировки осциллограмм по событиям.

1.5. Средства измерения, инструмент и принадлежности

Перечень оборудования и средств измерения, необходимых для проведения эксплуатационных проверок терминала, приведен в **Приложении 5**.

1.6. Маркировка и пломбирование

1.6.1. Маркировка терминала

Терминал имеет маркировку в соответствии с конструкторской документацией и ГОСТ 18620-86 способом, обеспечивающим ее четкость и сохранность в течение всего срока службы. Маркировка терминала соответствует требованиям ТР ТС 004/2011 и ТР ТС 020/2011.

1.6.2. Информационная табличка терминала

Каждый терминал на задней панели имеет информационную табличку, содержащую:

- наименование и товарный знак предприятия-изготовителя;
- наименование и условное обозначение терминала;
- номинальное оперативное напряжение питания;
- дату изготовления (месяц, год);
- заводской номер терминала;
- надпись «Сделано в России»;
- единый знак обращения продукции;
- QR код.

1.6.3. Выполнение маркировки транспортной тары

Маркировка транспортной тары выполнена по ГОСТ 14192-96, в том числе нанесены манипуляционные знаки: «Хрупкое. Осторожно», «Беречь от влаги», «Верх».

1.6.4. Пломбирование

Конструкция терминала предусматривает внутризаводское пломбирование.

1.7. Упаковка

1.7.1. Упаковка терминала

Упаковка терминала выполнена в соответствии с конструкторской документацией предприятия-изготовителя и ГОСТ 23216-78. Условия транспортирования, хранения терминала и допустимые сроки сохраняемости в упаковке до ввода в эксплуатацию указаны в Разделе 4.

2. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

2.1. Эксплуатационные ограничения

2.1.1. Эксплуатация и обслуживание устройства должны проводиться в соответствии с РД 153-34.3-35.613-00, при значениях климатических факторов, указанных в 1.2.2.2. настоящего РЭ.

Возможность работы устройства в условиях, отличных от указанных, должна согласовываться с предприятием-держателем подлинников конструкторской документации и с предприятием-изготовителем.

2.1.2. Условия эксплуатации в части воздействия механических факторов должны соответствовать требованиям по 1.2.2.4.

2.2. Подготовка к работе и ввод в эксплуатацию

2.2.1. Меры безопасности

- 2.2.1.1. При эксплуатации и техническом обслуживании устройства необходимо руководствоваться требованиями ГОСТ 12.2.007.0-75, «Правил по охране труда при эксплуатации электроустановок» и «Правил устройств электроустановок», а также требованиями настоящего РЭ.
- 2.2.1.2. Монтаж, обслуживание и эксплуатацию устройства разрешается проводить лицам, прошедшим специальную подготовку.
- 2.2.1.3. Работы на разъемах терминала следует проводить при обесточенном состоянии.
- 2.2.1.4. Перед включением и во время работы устройство должно быть надежно заземлено через заземляющий винт, расположенный на задней панели с контуром заземления (корпусом ячейки, шкафа) медным проводником сечением не менее 4 мм² наиболее коротким путем.

2.2.2. Внешний осмотр

- 2.2.2.1. Упакованный терминал «МИР» поставить на горизонтальную поверхность, руководствуясь манипуляционным знаком «Верх». Распаковать и убедиться в соответствии содержимого с прилагаемым паспортом.
- 2.2.2.2. Провести внешний осмотр терминала, убедиться в отсутствии механических повреждений, нарушения покрытий, которые могут произойти при транспортировании. Проверить наличие и целостность маркировки.
- 2.2.2.3. При обнаружении каких-либо несоответствий или неисправностей в оборудовании необходимо немедленно поставить в известность предприятие-изготовитель.

2.2.3. Установка и подключение

- 2.2.3.1. Габаритные и установочные размеры приведены в **Приложении 2**. Закрепить терминал по месту установки.
- 2.2.3.2. Подсоединить заземляющий проводник согласно 2.2.1.4.
- 2.2.3.3. Выполнить подключение терминала **«МИР»** согласно утвержденному проекту в соответствии с указаниями настоящего РЭ и АПДЛ.656121ххх РЭ2 «Руководство оператора». Соединение выполнять проводами в соответствии с 1.3.1.4.

2.2.4. Ввод в эксплуатацию

- 2.2.4.1. Терминал при поставке заказчику имеет заводские настройки, которые являются типовыми. При вводе терминала в эксплуатацию проверяются его настройки и при необходимости изменения параметров производится их настройка в соответствии с 2.3.
- 2.2.4.2. Для ввода в эксплуатацию терминала необходимо выполнить работы, указанные в Таблице 3.3.1, для проверки при новом включении.
- 2.2.4.3. При отгрузке терминала в составе шкафа при новом включении проводят работы по проверке шкафа по прилагаемой эксплуатационной документации.

2.3. Настройка редактируемых параметров

- 2.3.1. Устройство является свободно конфигурируемым и имеет настраиваемые параметры.
- **2.3.2.** Терминал имеет следующие виды настроек, приведенные в Таблице 2.3.1. Данные настройки вводятся через пользовательский интерфейс терминала.

Таблица 2.3.1. Виды настроек терминала

Настройка	Редактируемый параметр
Параметры присоединения	Номинальные значения токов, напряжений и других измеряе-
объекта	мых величин; параметры измерительных трансформаторов
Осциллографирование	Длительность записи режимов, максимальная длительность записи
Параметры связи (интерфейсы связи)	Выбор протокола модуля связи и параметров его работы

2.3.3. Конфигурирование параметров, приведенных в Таблице 2.3.2., осуществляется при помощи сервисного ПО «**MIRAPS**». Изменение уставок защит (2.4.9), параметров осциллографа (2.4.10) и выбор параметров в режиме тестирования (2.4.11) доступны через пользовательский интерфейс терминала.

Таблица 2.3.2. Параметры для конфигурирования

Вкладка	Редактируемый параметр
Настройки (Вкладка	Установка параметров трансформаторов тока и напряжения,
«Основные характеристики»)	выбор группы уставок
Логика управления (Вкладка	Настройка блока «Управление выключателем», выбор типа
«Логика управления»)	выключателя, настройка блока «Контроль синхронизма»
Уставки (Вкладка	Ввод/вывод защит и выбор режимов работы защит (выбор по-
«Параметрирование защиты»)	ложения накладок), ввод уставок
Настройки осциллографирования (Вкладка «Настройки осциллографирования»)	Настройка времени записи доаварийного режима, аварийного режима и послеаварийного режима
Системные параметры (Вкладка «Параметры связи»)	Выбор протокола модуля связи и параметров его работы

2.4. Структура пользовательского интерфейса

2.4.1. Пользовательский интерфейс

ЧМИ подразделяется на две функциональные части: модуль интерфейса Пользователя и модуль светодиодов.

Модуль интерфейса Пользователя представляет собой двунаправленное средство связи. Это означает, что:

- может произойти событие, которое отражается в пунктах меню для информирования оператора о факте, имевшем место и требующем его вмешательства;
- оператор может вывести на экран определенные интересующие его сведения.

Модуль интерфейса Пользователя состоит из дисплея и кнопок управления. Дисплей отображает информацию о текущем состоянии объекта управления и самого терминала. Основу интерфейса терминала составляет меню, имеющее структуру дерева, навигация по которому производится кнопками управления. Кнопки могут иметь различное назначение в зависимости от положения в структуре меню в момент использования.

Светодиодный модуль индикации имеет 16 светодиодов. Каждый светодиод имеет наименование на лицевой панели в соответствии с внутренним назначением. Режимы свечения светодиодов приведены в 1.4.3.5.

2.4.2. Назначение кнопок управления

Кнопка «С» (Cancel) имеет следующие функции:

- отмена любой операции в диалоговом окне;
- выход из текущего режима или переход на более высокий уровень дерева меню;
- **сброс**, при длительном нажатии кнопки, осуществляется формирование логического сигнала «Сброс» (работает при активированной функции HMI).

Кнопка «Е» (Enter) выполняет следующие функции:

- вход в меню более низкого уровня, указанное курсором;
- выполнение, кнопка подтверждает выполнение действия, указанного на дисплее;
- подтверждение ввода числовых значений и выбора элемента списка;
- переход в режим быстрого редактирования параметров;
- **пуск осциллографа**, при длительном нажатии кнопки, осуществляется формирование логического сигнала «**Пуск осциллографа**» (работает при активированной функции HMI).

Кнопки «Влево» (◀) и «Вправо» (▶) производят:

- быстрое передвижение курсора (через четыре пункта или в конец страницы) по пунктам меню на одном уровне;
- перемещение курсора в горизонтальном направлении в режиме редактирования параметров для смены активного знакоместа;
- изменение порядка значения параметра в режиме редактирования (например, с 10 до 100).

Кнопки **«Вверх»** (**▲**) и **«Вниз»** (**▼**) имеют функции:

- передвижение курсора вверх, вниз по пунктам текущего меню на одном уровне;
- выбор вариантов подтверждения в диалоговом окне;
- изменение значения параметра в режиме редактирования.

При активации HMI кнопка «I» предназначена для включения коммутационного аппарата, «O» — для отключения коммутационного аппарата (актуально только для исполнений с одним выключателем).

2.4.3. Режим ожидания

После включения терминала пользовательский интерфейс переходит в режим ожидания. В этом режиме на дисплее терминала включается экран, содержащий:

- мнемосхему с указанием текущих величин (Рисунок 2.4.1);
- время, дату.

2.4.4. Меню пользовательского интерфейса

Основным средством управления работой терминала и получения информации о его состоянии является меню.

Переход в главное меню из режима ожидания осуществляется нажатием кнопки «Е». Главное меню в зависимости включает следующие пункты:

- аналоговые сигналы (2.4.5);
- дискретные сигналы (2.4.6);
- векторные диаграммы (2.4.7)
- основные характеристики (2.4.8);
- защиты (2.4.9);
- настройки осциллографирования (2.4.10);
- тестирование (2.4.11);
- системные параметры (2.4.12).

Активное состояние меню индицируется в нижней строке экрана (например, «Тест выходных реле»).

В меню различаются два вида экранов:

- список с выбором (большинство меню): текущий выбор подсвечивается, возможен переход во вложенное меню;
- список без выбора (индикация неизменяемых параметров): курсор на экране отсутствует. Если в меню содержится больше пунктов, чем помещается на экране, то справа индицируется панель прокрутки.

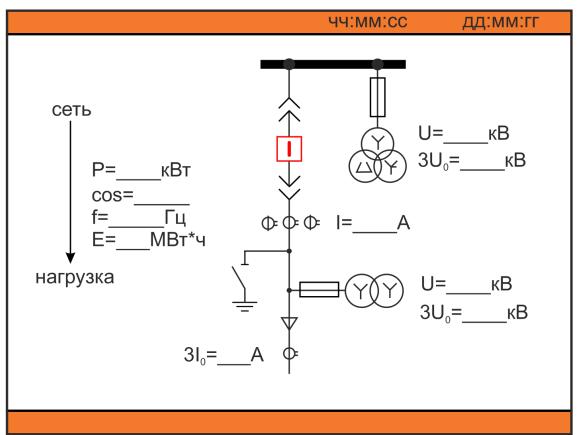


Рис.2.4.1. Мнемосхема терминала для РЗА тип 1

Примечание: Компоновка схемы может корректироваться в сервисном ПО «**MIRAPS**».

2.4.5. Аналоговые сигналы

В меню «**Аналоговые сигналы**» Пользователь может просмотреть текущие значения величин аналоговых сигналов. **Это меню доступно только в режиме просмотра**, параметры можно отредактировать с помощью сервисного ПО «**MIRAPS**».

Переключение между разделами (Рисунок 2.4.2) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

Рис.2.4.2. Меню «Аналоговые сигналы»

- 2.4.5.1. В меню «Аналоговые физические сигналы» (Рисунок 2.4.3) содержатся измеренные величины:
 - первичные и вторичные фазные токи, фазные и линейные напряжения, а также их симметричные составляющие;
 - первичные активные и реактивные мощности, проходящие через линию (трансформатор) и коэффициент мощности;
 - частота.

Показания переменных токов и напряжений отображаются в полярной форме (действующее значение величины и угол сдвига фаз, приведенный к вектору напряжения фазы A).

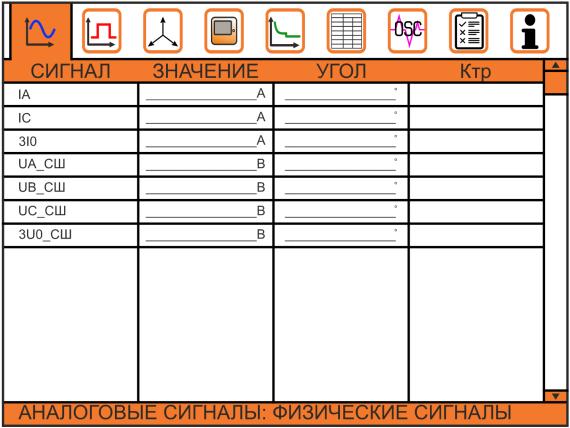


Рис.2.4.3. Окно вкладки «Аналоговые сигналы: Физические сигналы» для РЗА тип 1

2.4.5.2. В меню «**Аналоговые расчетные сигналы**» (Рисунок 2.4.4) содержатся расчетные аналоговые величины:

- первичные и вторичные фазные токи, фазные и линейные напряжения, а также их симметричные составляющие;
- первичные активные и реактивные мощности, проходящие через линию (трансформатор) и коэффициент мощности;
- частота.

Показания переменных токов и напряжений отображаются в полярной форме (действующее значение величины и угол сдвига фаз, приведенный к вектору напряжения фазы A), также доступен просмотр коэффициентов трансформации.

			ÓŞC	 	i
СИГНАЛ	ЗНАЧЕНИЕ	УГОЛ		Ктр	<u> </u>
IB	A		•		
I1	A		•		
12	A		•		
lH2	%	_		_	
U1_СШ	B		•		
U2_СШ	B		•		
3U0_СШ	B		•		
UAB_СШ	B		•		
UBC_СШ	B		•		
UCA_СШ	B		•		
Z1_СШ	Ом		•		
ZAB_СШ	Ом		•		
ZBC_CШ	Ом		•		
ZCA_CШ	Ом		•		
cosф	_	_		_	
f	Гц	_		_	
Р	кВт	_			
Q	квар	_			
S	ква	1			
Wh «+»	кВт·ч	1			
Wh «-»	кВт·ч	_			
Var «+»	квар·ч	-			
Var «-»	квар·ч	_			•
АНАЛОГОВЬ	ЫЕ СИГНАЛЫ:	РАСЧЕТНЫ	IE CNI	НАЛЫ	

Рис.2.4.4. Окно вкладки «Аналоговые сигналы: Расчетные сигналы» для РЗА тип 1

2.4.6. Дискретные сигналы

В меню «Дискретные сигналы» Пользователь может просмотреть текущие значения входных и выходных дискретных сигналов. Это меню доступно только в режиме просмотра, параметры можно отредактировать с помощью сервисного ПО «MIRAPS».

Переключение между разделами (Рисунок 2.4.5) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

ВХОДНЫЕ СИГНАЛЫ ВЫХОДНЫЕ СИГНАЛЫ

Рис. 2.4.5. Меню «Дискретные сигналы»

2.4.6.1. В меню «Дискретные входные сигналы» информация представлена в двух видах:

- в табличном (Рисунок 2.4.6), с отображением только введенных в использование входов (с указанием номера входа, названия сигнала, приходящего на этот вход, текущего состояния (0 либо 1) и указанием расположения входа на клеммнике);
- отображение по блокам (Рисунок 2.4.7), где все входа и их текущее состояние (0 либо 1) представлены в графическом виде. Переключение между табличным видом и отображением по блокам осуществляется нажатием кнопки «Вверх» (▲). Белым цветом обозначены неиспользуемые входа, серым обозначены входа, на которые приходит сигнал «0», желтым обозначены входа, на которые приходит сигнал «1».

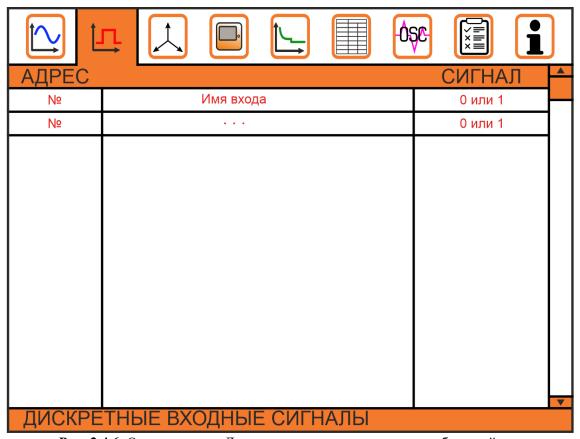


Рис. 2.4.6. Окно вкладки «Дискретные входные сигналы», табличный вид

			OSC I
X13	: СИГНАЛ	Х4: СИГНАЛ	Х6: СИГНАЛ
l1 [19	117
12		I10	l18
13		l11	l19
l4 [l12	120
15		I13	121
16		l14	122
17		l15	123
18		I16	124
ДИСК	(РЕТНЫЕ ВХ	ОДНЫЕ СИГНАЛЫ	▼

Рис. 2.4.7. Окно вкладки «Дискретные входные сигналы», отображение по блокам для РЗА тип 1

2.4.6.2. В меню «Дискретные выходные сигналы» информация также приведена в табличном (отображение введенных в работу выходных реле) либо графическом виде (Рисунок 2.4.8 и Рисунок 2.4.9.)

При переходе к графическому виду отображаются все существующие выхода и их состояние (нормально открытый либо нормально закрытый контакт). Белым цветом обозначены неиспользуемые входа, серым обозначены входа, на которые приходит сигнал «0», желтым обозначены входа, на которые приходит сигнал «1».

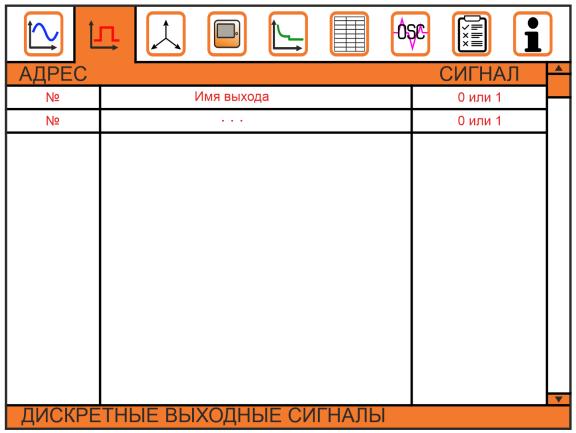


Рис. 2.4.8. Окно вкладки «Дискретные выходные сигналы», табличный вид

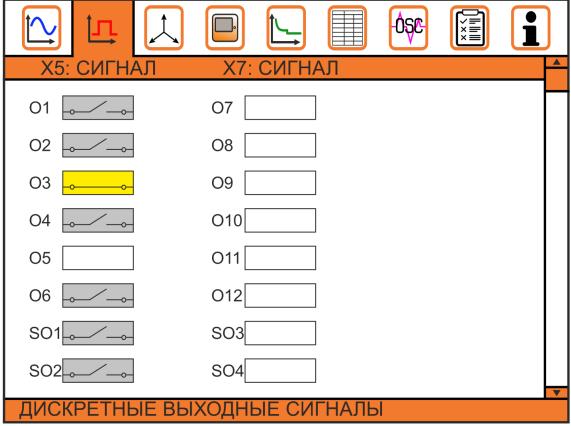


Рис. 2.4.9. Окно вкладки «Дискретные выходные сигналы», отображение по блокам для РЗА тип 1

2.4.7. Векторные диаграммы

Вкладка «Векторные диаграммы» предназначена для графического отображения измеренных и расчетных величин (симметричные составляющие тока и напряжения, а также дифференциальные токи при их наличии) (Рисунки 2.4.10 - 2.4.12). Это меню доступно только в режиме просмотра, параметры можно отредактировать с помощью сервисного ПО «МІКАРS».

Переключение между секциями и типами сигналов происходит за счет нажатия кнопки управления «Вверх» (▲). Показания переменных отображаются в полярной форме (действующее значение величины и угол сдвига фаз, приведенный к вектору напряжения фазы А).

Измеренные:

- Ia;
- Ib;
- Ic;
- Ua или Uab;
- Ub или Ubc;
- Ис или Иса.

Расчетные:

- I1:
- I2;
- U1;
- U2.

Примечание: При отсутствии сигнала или невозможности его расчета – поле остается пустым.

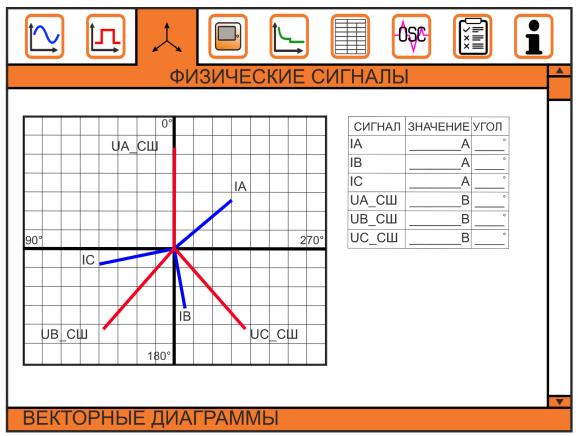


Рис. 2.4.10. Окно вкладки «Векторные диаграммы: Физические сигналы» для РЗА тип 1

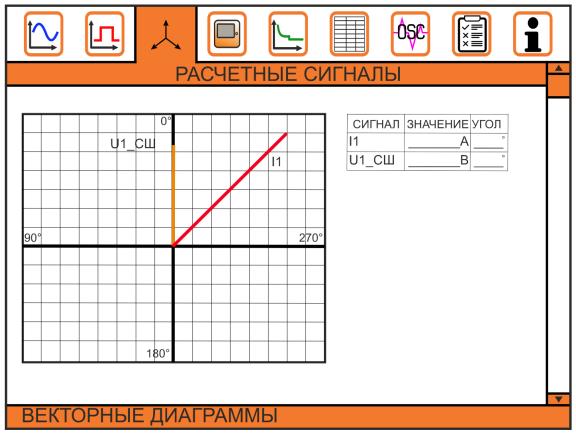
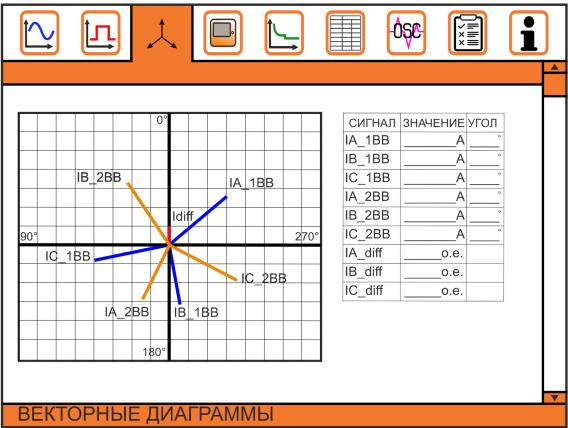



Рис. 2.4.11. Окно вкладки «Векторные диаграммы: Расчетные сигналы» для РЗА тип 1

Рис. 2.4.12. Окно вкладки «Векторные диаграммы: Сигналы дифференциальных сигналов» Актуально для ДЗТ, ДЗМ и ДЗЛ.

2.4.8. Основные характеристики

2.4.8.1. Меню «**Настройки**» (Рисунок 2.4.14) предназначено для ввода информации о параметрах измерительных трансформаторов. С помощью кнопок управления задаются номинальные первичные и вторичные токи трансформаторов тока и напряжения, для выбора группы соединения обмоток и частоты сети используется выпадающее меню. Числовые значения изменяются с помощью кнопок управления «**Вверх**» (▲) и «**Вниз**» (▼). Также в данном разделе доступно изменение активной группы уставок для защит, в которых предусмотрены 2 группы уставок. Кроме того, в настройке параметров ТН можно выбрать применение расчетного либо физического сигнала напряжения 3U0 для работы защиты напряжения.

Переключение между разделами (Рисунок 2.4.13) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

НАСТРОЙКИ КОНТРОЛЬ ТТ/ТН ЛОГИКА УПРАВЛЕНИЯ

a)

НАСТРОЙКИ НАСТРОЙКИ ТРАН-РА КОНТРОЛЬ ТТ/ТН ЛОГИКА УПРАВЛЕНИЯ

б)

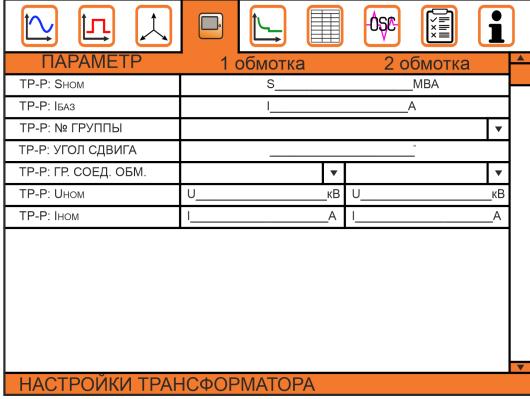
НАСТРОЙКИ НАСТРОЙКИ ЭЛ.МАШ. КОНТРОЛЬ ТТ/ТН ЛОГИКА УПРАВЛЕНИЯ

в)

НАСТРОЙКИ ПАРАМЕТРЫ АСК КОНТРОЛЬ ТТ/ТН ЛОГИКА УПРАВЛЕНИЯ

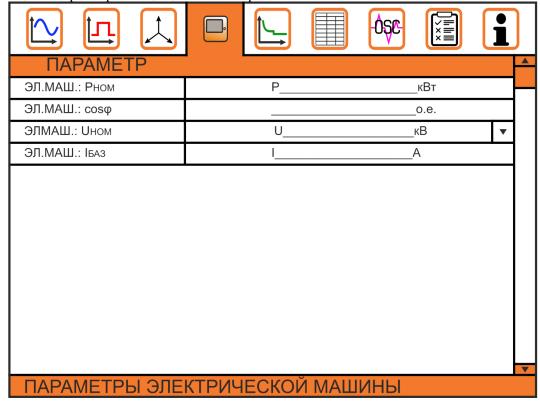
L)

Рис. 2.4.13. Меню «Основные характеристики» а) классический набор; б) ДЗТ; в) ДЗМ; г) УСК



for the	Sc P				
ПАРАМЕТР	ЗНАЧЕНИЕ -				
УПРАВЛЕНИЕ С НМІ	abla				
ТЕЛЕУПРАВЛЕНИЕ					
АКТИВНАЯ ГР.УСТ.	▼				
U ОПЕР. ПИТАНИЯ	▼				
TT					
ТТ: ТИП ДАТЧИКА	▼				
ТТ: Іном. ПЕРВ.	IA				
ТТ: Іном. ВТОР.	IA				
ТТ: КОЭФФ.КАЛИБР.	мВ/кА				
ТТ: СХЕМА СОЕДИН.	▼				
ТТНП	abla				
ТТНП: ТИП ДАТЧИКА	▼				
ТТНП: Іном. ПЕРВ.	IA				
ТТНП: Іном. ВТОР.	IA				
ТТНП: КОЭФФ.КАЛИБР.	мВ/кА				
ТН НА СШ	abla				
ТН СШ: ТИП ДАТЧИКА	▼				
ТН СШ: Uном. ЛИН. ПЕРВ.	UкВ				
ТН СШ: Uном. ЛИН. ВТОР.	UB				
ТН СШ: КОЭФФ.КАЛИБР.	мВ/кВ				
ТН СШ: СХЕМА СОЕДИН.	▼				
ТН СШ: ЗНАЧ. U0	▼				
ТН СШ: ГР. СОЕД. ОБМ.	▼				
ТН НА КЛ					
ТН КЛ: ТИП ДАТЧИКА	▼				
ТН КЛ: Uном. ЛИН. ПЕРВ.	UкВ				
ТН КЛ: UHOM. ЛИН. ВТОР.	UB				
ТН КЛ: КОЭФФ.КАЛИБР.	мВ/кВ				
ТН КЛ: СХЕМА СОЕДИН.	▼				
ТН КЛ: ЗНАЧ. U0	▼				
ТН КЛ: ГР. СОЕД. ОБМ.	▼				
ТН КЛ: УГОЛ СОГЛ.	°				
НАСТРОЙКИ					

Рис. 2.4.14. Окно вкладки «Основные характеристики: Настройки» для РЗА тип 1



2.4.8.2. Меню «**Настройки трансформатора**» (Рисунок 2.4.15) предназначено для ввода информации о параметрах силового трансформатора.

Рис. 2.4.15. Окно вкладки «Основные характеристики: Настройки трансформатора» для РЗА тип 2 (ДЗТ)

2.4.8.3. Меню «Параметры электрической машины» (Рисунок 2.4.16) предназначено для ввода информации о параметрах защищаемой электрической машины.

Рис. 2.4.16. Окно вкладки «Основные характеристики: Параметры электрической машины» для РЗА тип 3 (ДЗМ)

2.4.8.4. Меню «Параметры АСК» (Рисунок 2.4.17) предназначено для настройки автоматики синхронной коммутации. В зависимости от заданного типа нагрузки изменяется мнемосхема. Параметрами «Тип нагрузки» и «Тип нейтрали» определяется логика работы (Подробное описание в АПДЛ.656121ххх РЭ2 «Руководство оператора»). Для обеспечения гарантированного прохождения команды включения / отключения (по прошествии заданного времени — «t ожидания»), даже в случае неуспешной работы АСК, предусмотрена функция «Коммут.в любом случ.». За счет параметра «Время коммутации» выбирается тип используемого времени работы выключателя. АСК работает только в пределах напряжения, тока и частоты, задаваемых соответствующими уставками. Также доступны параметры для 2 группы уставок.

Команды отключения от защит приходит напрямую на выключатель без контроля синхронизма.

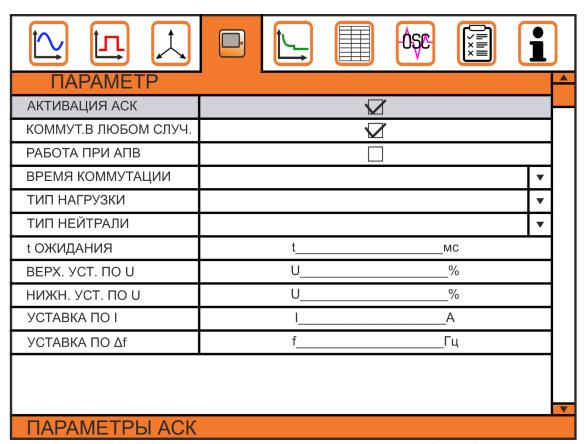


Рис. 2.4.17. Меню «Параметры АСК» для РЗА тип 4 (УСК)

2.4.8.5. Меню «Контроль ТТ/ТН» (Рисунок 2.4.18)

Это меню доступно только в режиме просмотра, параметры можно отредактировать с помощью сервисного ПО «MIRAPS».

ПАРАМЕТР	СШ	КЛ
КОНТРОЛЬ ТТ		_
ТТ: ВЫД. ВРЕМЕНИ	t	MC
ТТ: ПОВЕДЕНИЕ ЗАЩИТ		▼.
КОНТРОЛЬ ТН (БНН)		
БНН: ВЫД. ВРЕМЕНИ	tmc	tmc
БНН: ВРЕМЯ ВОЗВРАТА	tmc	tmc
БНН: ПРЕДОХРАНИТЕЛЬ		
АКТИВАЦИЯ U2		
УСТАВКА U2	%Ином	%Ином
ВЫД. ВРЕМЕНИ U2	tмс	tmc
АКТИВАЦИЯ <u>Д</u> 3U0		
УСТАВКА ДЗU0	%Ином	%Ином
ВЫД. ВРЕМЕНИ Δ3U0	tмс	tmc
АКТИВАЦИЯ 12		
УСТАВКА І2	%Іном	%Іном
ВЫД. ВРЕМЕНИ 12	tmc	tмс
КОНТРОЛЬ АВ_ТН		
АВ_ТН: ВРЕМЯ ВОЗВРАТА	tmc	tмс
АКТИВАЦИЯ БК НО		
БК НО: ВЫД. ВРЕМЕНИ	tмс	tmc
АКТИВАЦИЯ БК НЗ		
БК НЗ: ВЫД. ВРЕМЕНИ	tмс	tмс
ПОВЕДЕНИЕ ЗАЩИТ	▼	▼
ПОВЕДЕНИЕ 67	▼	▼
ПОВЕДЕНИЕ 67N	▼	▼
ПОВЕДЕНИЕ 25		▼
КОНТРОЛЬ ТТ/ТН		V

Рис. 2.4.18. Окно вкладки «Основные характеристики: Контроль ТТ/ТН» для РЗА тип 1

2.4.8.6. Меню «**Логика управления**» (Рисунок 2.4.19).

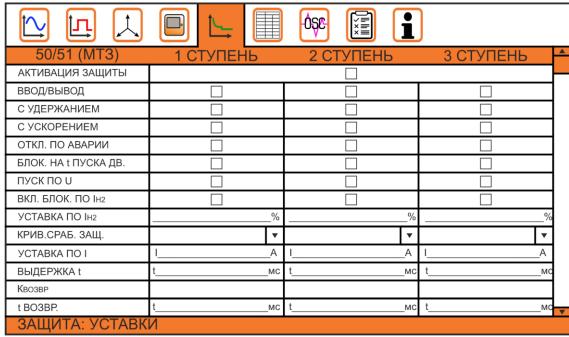
Это меню доступно только в режиме просмотра, параметры можно отредактировать с помощью сервисного ПО «MIRAPS».

				-ÓŞC		i	
ПАРАІ	METP			ЗНА	ЧЕНИІ	E	A
КОНТР. ВЫКЛЮЧАТЕЛЯ						▼	
КОНТР. ЗАЗ. НОЖЕЙ						•	
КОНТР. СИНХР. (КС)							
ТИП КОМАНДЫ ВКЛ.						▼	
КОМАНДА ВКЛ.ДЛИТ.ИМП.		t			мс	•	
ТИП КОМАНДЫ ОТКЛ.						▼	
КОМАНДА ОТКЛ.ДЛИТ.ИМГ	l.	t			мс		
ТИП ВЫКЛЮЧАТЕЛЯ						▼	
ТИП ЯЧЕЙКИ						▼	
ABP						•	
КОНТРОЛЬ СР							
ВЫД. ВКЛ. СВ ПО АВР		t			ис		
ВНР							
ВЫД. ВКЛ. ВВ ПО ВНР		t	MC		ИС		
ВЫД. ОТКЛ. СВ ПО ВНР		t			ИС		
							▼
ЛОГИКА УПРАВЛЕ	- RNH:						

Рис. 2.4.19. Окно вкладки «Основные характеристики: Логика управления» для РЗА тип 1

2.4.9. Защиты

Меню «Защиты» (Рисунок 2.4.21) используется для ввода/вывода различных защит и редактирования уставок, а также для просмотра наименований защит, типов функций, коэффициентов возврата. Полный перечень используемых защит представлен в Таблицах 1.2.10.-1.2.12. Параметры защит также изменяются с помощью сервисного ПО «MIRAPS».


Вкладка каждой защиты содержит три таблицы: уставки (доступны для редактирования), измерения и срабатывания (доступны в режиме просмотра). Переключение между разделами (Рисунок 2.4.20) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

В качестве примера экрана защит приведена вкладка защиты MT3 (Рисунки 2.4.21 - 2.4.23).

50/51 (MT3)	32Q (3PM напр.)	59 (3∏H)
50N/51N (MT3HΠ)	37 (3MT)	59N (3ΠΗΗΠ)
50BF (УРОВ)	48/51LR (3ПД)	47 (3HOΠ)
46 (ТЗОП)	40 (3ΠB)	81H (3M4)
67 (МТЗ напр.)	21 (Д3)	81L (AYP)
67N (МТЗНП напр.)	27R (3MHO)	79 (AΠB)
32Р (ЗАМ напр.)	27/27S (3MH)	25 (KC)
	-	

Рис. 2.4.20. Меню «Защиты» для РЗА тип 1

Рис. 2.4.21. Окно вкладки «Защиты», экран «Уставки» для защиты 50/51 (МТЗ) РЗА тип 1

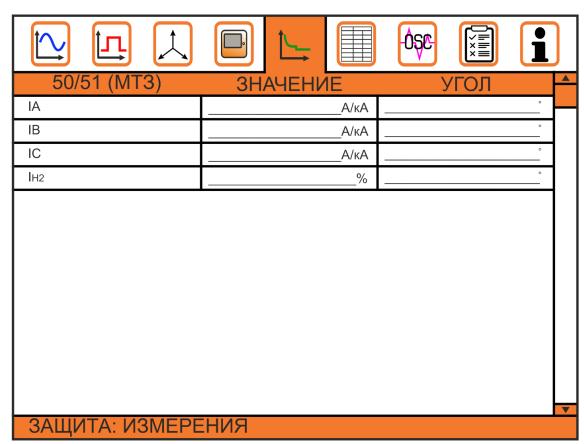


Рис. 2.4.22. Окно вкладки «Защиты», экран «Измерения» для защиты 50/51 (МТЗ) РЗА тип 1



Рис. 2.4.23. Окно вкладки «Защиты», экран «Срабатывания» для защиты 50/51 (МТЗ) РЗА тип 1

2.4.10. Настройки осциллографирования

Меню «**Настройки осциллографирования**» (Рисунок 2.4.25) предназначено для редактирования Пользователем максимального времени записи осциллограмм, длительности записи осциллограмм доаварийного, аварийного и послеаварийного режимов.

Переключение между разделами (Рисунок 2.4.24) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».



Рис. 2.4.24. Меню для переключения между разделами

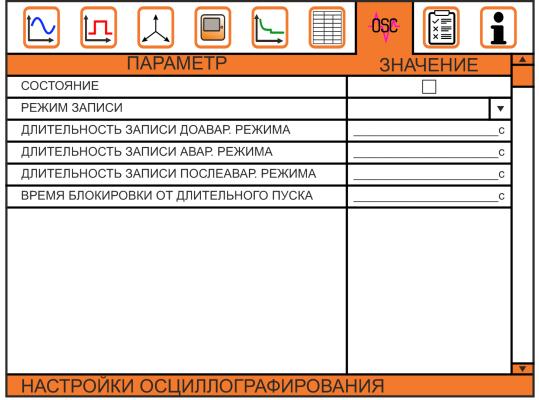


Рис. 2.4.25. Окно вкладки «Настройки осциллографирования»

Раздел «**Регистратор событий**» (Рисунок 2.4.26) позволяет просматривать данные об аварийных событиях (дата, время). Предусмотрена функция быстрого открытия из окна «**Мнемосхема**» за счет нажатия кнопки «**Вверх**» (▲).

Рис. 2.4.26. Окно вкладки «Настройки осциллографирования: Регистратор событий» для РЗА тип 1

2.4.11. Тестирование

Для верификации работоспособности терминала используется меню «**Тестирование**».

- «Тест светодиодов» (Рисунок 2.4.28) тестирование светодиодов. После нажатия кнопки «Тест индикации» все светодиоды (L1 L16) поочередно с некоторой задержкой изменяют состояние: не горят/зеленый/красный;
- «Тест выходных реле» (Рисунок 2.4.29) включение/отключение режима тестирования. Осуществляется в ручном режиме путем нажатия Пользователем на любой из значков контакта.
- «Тест виртуальных выходных сигналов» (Рисунок 2.4.29) включение/отключение режима тестирования. Осуществляется в ручном режиме путем нажатия Пользователем на любой из значков контакта. При переключении изменяется только виртуальное состояние выхода, которое в дальнейшем отправляется по АСУ ТП. Реальный вход не изменяется свое состояние.
- «Виртуальные НМІ кнопки» (Рисунок 2.4.30) включение/отключение режима тестирования. Осуществляется в ручном режиме путем нажатия Пользователем на любой из значков контакта. При нажатии происходит изменение состояния виртуальной кнопки, которая может быть использована в логических уравнениях как дополнительный сигнал управления.

Переключение между разделами (Рисунок 2.4.27) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

При переходе Пользователя к меню «Тестирование» запрашивается пароль.

При переходе в режим тестирования автоматически запрещаются запись осциллограмм и регистрация событий. При этом обеспечивается работа функций защиты, различных фоновых задач, функций конфигурирования и работы с уставками и регистрация системных событий.

Режим тестирования осуществляется автоматической подачей сигналов на дискретный вход терминала после нажатия кнопки «Е».

ТЕСТ СВЕТОДИОДОВ ТЕСТ ВЫХОДНЫХ РЕЛЕ

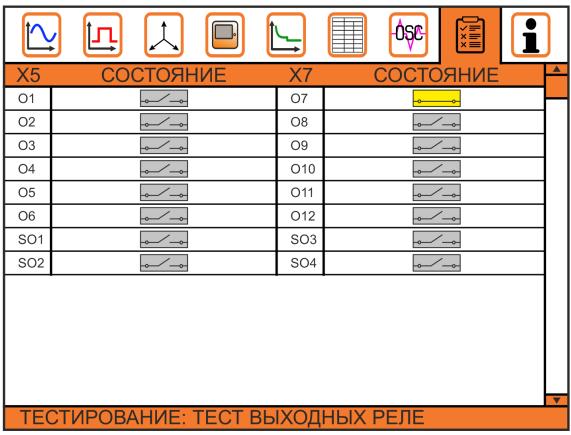

ТЕСТ ВИРТУАЛЬНЫХ ВЫХОДНЫХ СИГНАЛОВ ВИРТУАЛЬНЫЕ НМІ КНОПКИ

Рис. 2.4.27. Меню для переключения между разделами

Į,								
Nº	СОСТОЯНИЕ	Nº	СОСТОЯНИЕ	A				
L1	0	L9	0					
L2	0	L10	0					
L3	0	L11	0					
L4	0	L12	0					
L5	0	L13	0					
L6	0	L14	0					
L7	0	L15	0					
L8	0	L16	0					
TEC	СТИРОВАНИЕ: TECT И	<u>индик</u> и	АЦИИ					

Рис. 2.4.28. Окно вкладки «Тестирование: Тест индикации»

Рис. 2.4.29. Окно вкладки «Тестирование: Тест выходных реле» и «Тестирование: Тест виртуальных выходных сигналов» для РЗА тип 1

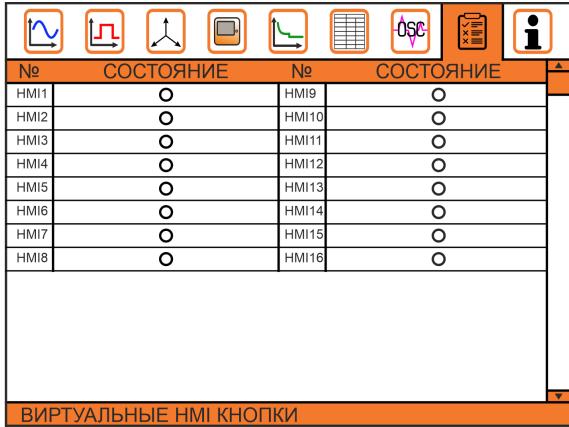


Рис. 2.4.30. Окно вкладки «Тестирование: Виртуальные НМІ кнопки»

2.4.12. Системные параметры

Меню «Системные параметры» (Рисунок 2.4.32) предназначено для отображения информации о контролируемом объекте и параметрах терминала: заводской номер, тип, место установки, частота дискретизации, версия ПО, количество входов/выходов, номинальное напряжение, загрузка ЦП. Также в данном меню представлены разделы «Настройки связи» (Рисунок 2.4.33) и «Настройки дисплея» (Рисунок 2.4.34).

Переключение между разделами (Рисунок 2.4.31) осуществляется с помощью меню, которое можно вызвать нажатием кнопки «Е».

Рис. 2.4.31. Меню для переключения между вкладками

	i
ПАРАМЕТР ЗНАЧЕНИЕ	<u> </u>
НОМЕР ТЕРМИНАЛА	
ТИП ПРИМЕНЕНИЯ	
ТИП ЯЧЕЙКИ	
ВЕРСИЯ ПО ТЕРМИНАЛА	
СОСТОЯНИЕ ТЕРМИНАЛА	
НАЗВАНИЕ КОМПАНИИ	
МЕСТО УСТАНОВКИ	
КОЛ-ВО ДИСКРЕТНЫХ ВХ.	
КОЛ-ВО ДИСКРЕТНЫХ ВЫХ.	
КОЛ-ВО АНАЛОГОВЫХ ВХ. І	
КОЛ-ВО АНАЛОГОВЫХ ВХ. U	
НОМ. U ПИТАНИЯ ТЕРМИНАЛА	
	▼
СИСТЕМНЫЕ ПАРАМЕТРЫ	

Рис. 2.4.32. Окно вкладки «Системные параметры» для РЗА тип 1

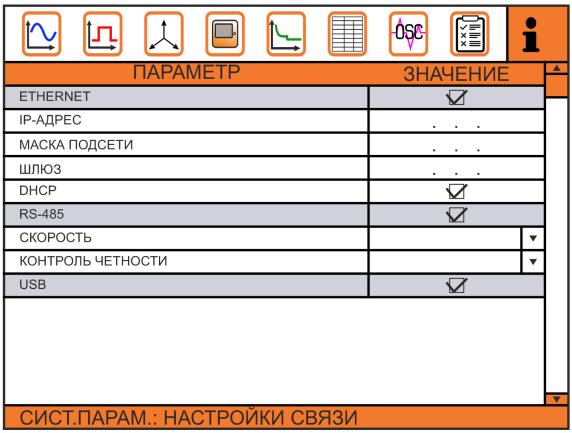


Рис. 2.4.33. Окно вкладки «Настройки связи»

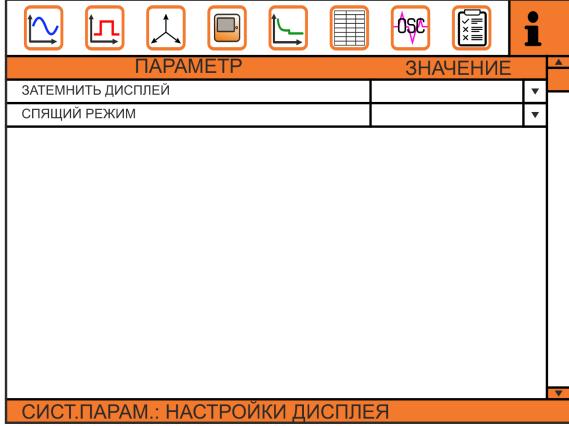


Рис. 2.4.34. Окно вкладки «Настройки дисплея»

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1. Общие указания

3.1.1. Цикл технического обслуживания

Цикл ТО устройства в процессе его эксплуатации для устройств на микропроцессорной базе согласно требованиям РД 153-34.3-35.613-00 составляет от трех до двенадцати лет. Под циклом ТО понимается период эксплуатации терминала между двумя ближайшими профилактическими восстановлениями, в течение которого выполняются в определенной последовательности виды ТО, предусмотренные вышеуказанными Правилами: проверка (наладка) при новом включении, первый профилактический контроль, профилактическое восстановление, проводимые в сроки и в объеме проверок, установленных у потребителя. В процессе эксплуатации объем проверок может быть сокращен, а порядок их проведения изменен в соответствии с внутренними правилами эксплуатации микропроцессорных защит потребителя.

По степени воздействия различных факторов внешней среды на аппараты в электрических сетях $0,4\div110$ кВ (более точно по типам устройств указано в разделе 1.1.1) могут быть выделены две категории помещений.

- к I категории относятся закрытые, сухие отапливаемые помещения;
- ко II категории относятся помещения с большим диапазоном колебаний температуры окружающего воздуха, в которых имеется;
- сравнительно свободный доступ наружного воздуха (металлические помещения, ячейки типа КРУН, комплектные трансформаторные подстанции и др.), а также помещения, находящиеся в районах с повышенной агрессивностью среды.

Цикл технического обслуживания для устройств, установленных в помещениях I категории, принимается равным 12, 8 или 6 годам, а для устройств, установленных в помещениях II категории, принимается равным 6 или 3 годам в зависимости от местных условий, влияющих на ускорение износа устройств. Цикл обслуживания устанавливается распоряжением технического руководителя предприятия.

В Таблице 3.1.1 указаны рекомендации предприятия-изготовителя по периодичности проведения ТО устройства.

Таблица 3.1.1. Периодичность проведения ТО устройства

Маста установии	Цикл	Количество лет эксплуатации													
Место установки терминала	ТО, лет	0	1	2	3	4	5	6	7	8	9	10	11	12	13
В помещениях I категории (вариант 1)	12	Н	К 1	-	0	-	К	-	0	ı	К	ı	В	-	О
В помещениях I категории (вариант 2)	8	Н	К 1	-	К	-	О	-	В	1	О	1	К	-	О
В помещениях I категории (вариант 3)	6	Н	К1	-	К	-	В	-	К	1	К	1	В	-	К
В помещениях II категории (вариант 1)	6	Н	К 1	-	К	-	В	-	К	ı	К	ı	В	-	К
В помещениях II категории (вариант 2)	3	Н	К1	В	-	-	В	-	-	В	-	ı	В	-	1

Примечания:

- 1. Н проверка (наладка) при новом включении;
 - K 1 первый профилактический контроль;
 - K профилактический контроль;
 - B профилактическое восстановление;
 - O опробование.
- 2. В таблице указаны обязательные опробования. Кроме того, опробования рекомендуется производить в годы, когда не выполняются другие виды обслуживания. Если при проведении опробования или профилактического контроля выявлен отказ устройства или его элементов, то производится устранение причины, вызвавшей отказ, и при необходимости в зависимости от характера отказа профилактическое восстановление.

3.2. Меры безопасности

- **3.2.1.** Конструкция устройства пожаробезопасна в соответствии с ГОСТ 12.1.004-91 и обеспечивает безопасность обслуживания в соответствии с ГОСТ Р 51321-2007, ГОСТ 12.2.007.0-75. По требованиям защиты человека от поражения электрическим током терминал соответствует классу 0I по ГОСТ 12.2.007.0-75.
- **3.2.2.** При эксплуатации и техническом обслуживании терминала необходимо руководствоваться «Правилами технической эксплуатации электроустановок потребителей» и «Правилами по охране труда при эксплуатации электроустановок».
- **3.2.3.** Требования к персоналу и правила работы с терминалом, необходимые при обслуживании и эксплуатации терминала приведены в 2.2.1 настоящего РЭ.
- **3.2.4.** При соблюдении требований эксплуатации и хранения терминал не создает опасность для окружающей среды.

3.3. Порядок технического обслуживания и проверка работоспособности изделия

Внимание! Устройства могут содержать цепи, действующие на отключение выключателей смежных присоединений (цепи ЛЗШ, УРОВ и др.), поэтому перед началом работ по ТО и проверке защит данного устройства необходимо выполнить мероприятия, исключающие отключение оборудования, не выведенного в ремонт (отключить автоматы или ключи, вывести накладки). Работы производить при выведенном первичном оборудовании.

В Таблице 3.3.1. приведены виды работ при соответствующих проверках.

Таблица 3.3.1. Виды работ при проверке устройства

Вид	В С
проверок	Вид работ при проверке
	а) внешний осмотр: отсутствие внешних следов ударов, потеков воды, в том
Н, К1, В, К	числе высохших, отсутствие налета окислов на металлических поверхностях,
п, кі, в, к	отсутствие запыленности, осмотр клемм входных и выходных сигналов, разъ-
	емов интерфейса связи в части состояния их контактных поверхностей
Н, К1, В, К	б) измерение сопротивления изоляции независимых цепей (кроме цепей интер-
п, кі, в, к	фейса связи) по отношению к корпусу и между собой
Н, В	в) испытания электрической прочности изоляции независимых цепей (кроме
п, в	цепей интерфейса связи) по отношению к корпусу и между собой
Н	г) проверка работоспособности дискретных входов, выходных реле и
П	светодиодов терминала
	д) задание (или проверка) требуемой конфигурации устройства в соответствии
Н, К1, В	с принятыми проектными решениями и техническими характеристиками
	(функциями) устройства
Н, К1, В	е) задание (или проверка) уставок устройства в соответствии с заданной
11, K1, D	конфигурацией
Н, К1, В	ж) проверка правильности отображения значений и фазовых углов токов
11, K1, D	(напряжений), поданных от постороннего источника
	з) проверка параметров (уставок) срабатывания и коэффициентов возврата каж-
Н, К1, В	дого ИО при подаче на входы устройства тока (напряжения) от постороннего
	источника; контроль состояния светодиодов при срабатывании
	и) проверка срабатывания устройства на рабочих уставках и определение изме-
H	нения параметров срабатывания при напряжении оперативного тока, равном
	0,8 и 1,1 U _{ном}
Н, К1, В	к) проверка времени срабатывания защиты и автоматики на соответствие
11, K1, D	заданным уставкам по времени

	л) проверка отсутствия ложных действий при снятии и подаче напряжения опе-
Н	ративного тока с повторным включением через 0,5 с при минимальном значе-
п	нии диапазона уставок с подачей тока (напряжения), равного 0,8 тока (напря-
	жения) срабатывания
	м) проверка взаимодействия ИО и логических цепей защиты с контролем со-
	стояния всех контактов выходных реле и визуальным контролем состояния све-
H, B	тодиодов. Проверка проводится при напряжении питания оперативного тока,
	равном 0,8 \dot{U}_{HOM} , и создании условий для поочередного срабатывания каждого
	ИО и подачи необходимых сигналов на дискретные входы защиты
Н, К1, В, К	н) проверка управляющих функций защиты с воздействием контактов выход-
11, K1, D, K	ного реле в цепи управления коммутационным аппаратом
пр	о) проверка функций регистрации событий, осциллографирования сигналов,
H, B	отображения параметров защиты
II IC1 D IC	п) проверка управления коммутационным аппаратом присоединения (вклю-
Н, К1, В, К	чить/ отключить)
II IC1 D	р) проверка взаимодействия с другими устройствами защиты, электроавтома-
Н, К1, В	тики, управления и сигнализации с воздействием на коммутационный аппарат
Н, К1, В, К	с) проверка рабочим током

Внимание! В случае обнаружения дефектов в терминале или в устройстве связи с ПК, необходимо немедленно поставить в известность предприятие-изготовитель. Восстановление вышеуказанной аппаратуры может производить только специально подготовленный персонал.

Порядок и методика проверок, указанных в Таблице 3.3.1, приведены в ПМИ на соответствующие устройства.

3.3.1. Проверка сопротивления и прочности изоляции

Испытание изоляции проводится в холодном состоянии в соответствии с требованиями ПТЭЭП.

3.3.1.1. Перед проведением проверки необходимо:

- снять оперативное питание терминала;
- временными перемычками объединить цепи независимых групп. В терминале выделяются следующие независимые группы цепей:
 - о переменного тока;
 - о переменного напряжения;
 - о питания терминала;
 - о входных дискретных сигналов;
 - о выходных реле.
- 3.3.1.2. Необходимо измерить сопротивление изоляции между цепями, соединенными между собой и корпусом, а также между каждой цепью и оставшимися соединенными между собой цепями. Измерения проводятся с помощью мегомметра на напряжение 1000 В для цепей выше 60 В согласно ПТЭЭП. При всех видах измерений сопротивление собранных цепей должно быть не менее 1 МОм. 3.3.1.3. Электрическая прочность изоляции между указанными цепями относительно корпуса и между собой проверяется напряжением 1000 В частотой 50 Гц в течение 1 мин. После этого вида проверки необходимо повторно измерить сопротивление изоляции терминала. Испытание изоляции является успешным, в случае если ее сопротивление сохранилось не менее 1 МОм.

3.3.2. Задание (проверка) уставок и конфигурации

- 3.3.2.1. Задание (проверка) уставок производится в соответствии с рабочей документацией объекта. Выбор активной группы и изменение уставок осуществляется через пользовательский интерфейс, п. 2.4.8. 3.3.2.2. Терминал отгружается сконфигурированным. При необходимости на объекте осуществляется изменение конфигурации при помощи сервисного ПО «MIRAPS».
- 3.3.2.3. Список параметров для конфигурирования приведен в 2.3.3.

3.3.3. Проверка правильности отображения аналоговых величин

Необходимо исключить возможность действия терминала на внешние устройства. Проверка осуществляется подачей тока и напряжения от постороннего источника на соответствующие клеммы разъемов терминала. Величины и фазовые сдвиги поданных токов и напряжений контролируются на дисплее терминала и/или при помощи сервисного ПО «MIRAPS».

Примечание: Здесь и далее в качестве постороннего источника рекомендуется применять ИК РЕТОМ или другое оборудование с аналогичными характеристиками.

3.3.4. Проверка параметров (уставок, ИО) защит терминала

Необходимо исключить возможность действия терминала на внешние устройства.

- 3.3.4.1. Проверка ИО производится подачей от постороннего источника токов и/или напряжений, соответствующих уставкам (имитация аварийных режимов). Контроль срабатывания ИО осуществляется по замыканию выходного реле с фиксацией параметров срабатывания и возврата.
- 3.3.4.2. Проверка взаимодействия ИО и логических цепей защит осуществляется одновременной подачей логического сигнала и токов и/или напряжений, соответствующих срабатыванию ИО. Контроль осуществляется по замыканию назначенного выходного реле.
- 3.3.4.3. В проверках 3.3.4.1 и 3.3.4.2 контролируется свечение соответствующих светодиодов терминала.
- 3.3.4.4. Методика проверки ИО защит приведены в ПМИ на соответствующие устройства.

3.3.5. Проверка поведения защиты при снятии и подаче напряжения оперативного тока необходимо исключить возможность действия терминала на внешние устройства.

После подачи на терминал рабочих токов и напряжений, равных 90 % от величины срабатывания, снимается и снова подается напряжение оперативного тока. В ходе проверки не должно происходить срабатывания защиты.

3.3.6. Проверка действия в центральную сигнализацию и взаимодействия с внешними устройствами

Проверка действия терминала в центральную сигнализацию и взаимодействия с внешними устройствами проводится наладочным персоналом в установленном порядке.

3.3.7. Проверка взаимодействия терминала с внешними устройствами

Необходимо исключить воздействие в цепи управления первичным оборудованием. Проверка взаимодействия с внешними устройствами осуществляется имитацией соответствующих режимов и контролем выходных сигналов.

3.3.8. Проверка терминала рабочим током и напряжением

В проверку рабочим током и напряжением входит:

- проверка исправности всех токовых цепей измерением вторичных токов нагрузки в фазах;
- проверка исправности и правильности подключения цепей напряжения;
- проверка правильности подключения цепей тока каждой группы трансформаторов тока снятием векторной диаграммы и сверкой ее с фактическим направлением мощности в первичной цепи.

3.4. Перечень неисправностей и методы их устранения

3.4.1. Неисправности могут возникнуть при нарушении условий транспортирования, хранения и эксплуатации, в результате износа комплектующих.

Для обнаружения неисправностей при включении питания и в процессе работы терминала функционирует система самодиагностики.

3.4.2. Самодиагностика терминала подразделяется на два этапа: начальный (при включении/перезапуске терминала) и постоянный (в процессе работы устройства).

Объем самодиагностики включает в себя контроль следующих важных узлов терминала: блока логики, блока питания и блоков дискретного ввода/вывода. В блоках дискретного ввода/вывода имеется токовый контроль исправности цепей обмоток выходных реле. Информация о

самодиагностике поступает от всех контроллеров, работающих в составе терминала, и анализируется в центральном и сигнальном процессорах.

Примечание: Самодиагностика терминала не контролирует исправность контактов выходных реле (например, залипание), а также работоспособность дискретных входов, целостность обмоток промежуточных трансформаторов тока и напряжения.

При обнаружении устойчивой неисправности на лицевой панели терминала включается светодиод **Неисправность**, вводится запрет управления выходными реле.

При обнаружении неисправности **в процессе работы** формируются два набора кодов неисправности – текущий и общий. Текущий код неисправности отображает состояние самодиагностики на текущий момент, общий код неисправности отображает все неисправности, включая выявленные кратковременно и исчезнувшие.

3.5. Утилизация

3.5.1. После окончания установленного срока службы терминал подлежит демонтажу и утилизации. Специальных мер безопасности при демонтаже и утилизации не требуется. Демонтаж и утилизация не требуют специальных приспособлений и инструментов.

4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Условия транспортирования, хранения терминала и допустимые сроки сохраняемости в упаковке до ввода в эксплуатацию приведены в Таблице 4.1.1.

Таблица 4.1.1. Условия транспортирования и хранения

		овий транспорти- ти воздействия		Допустимый	
Вид поставки	механических факторов по ГОСТ 23216-78	климатических факторов, та- ких как условия хране- ния по ГОСТ 15150-69	Обозначение условий хранения по ГОСТ 15150-69	срок сохра- няемости в упаковке поставщика, год	
Внутрироссийские (кроме регионов Крайнего Севера и труднодоступных районов по ГОСТ 15846-2002)	С	5(ОЖ4)	3(米3)	2	
Внутрироссийские в районы Крайнего Севера и труднодоступные районы по ГОСТ 15846-2002	С	5(ОЖ4)	3(米3)	2	
Экспортные в районы с умеренным климатом	С	5(0米4)	3(Ж3)	3	

Примечания:

- 1. Нижнее значение температуры окружающего воздуха при транспортировании и хранении определяется комплектующей элементной базой и материалами, применяемыми в устройстве.
- 2. Для условий транспортирования в части воздействия механических факторов «Л» допускается общее число перегрузок не более четырех.
- 3. Требования по условиям хранения распространяются на склады изготовителя и потребителя продукции.
- **4.2. Транспортирование упакованного терминала** может проводиться любым видом закрытого транспорта. При этом транспортная тара терминала должна быть закреплена неподвижно.
- **4.3.** Погрузка, крепление и перевозка терминала в транспортных средствах должны осуществляться в соответствии с действующими правилами перевозок грузов на соответствующих видах транспорта, причем погрузка, крепление и перевозка терминала железнодорожным транспортом должна проводиться в соответствии с «Техническими условиями погрузки и крепления грузов» и «Правилами перевозок грузов», утвержденными Министерством путей сообщения.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **5.1.** Предприятие-изготовитель гарантирует **соответствие устройства требованиям** ТУ 656121-002-60432852-2023 «Устройство защиты «МИР» при соблюдении потребителем правил эксплуатации, транспортирования и хранения.
- **5.2.** Предприятие-изготовитель гарантирует **соответствие устройства требованиям** ТУ 656121-002-60432852-2023 «Устройство защиты «МИР» при соблюдении потребителем правил и условий транспортирования, хранения, монтажа и эксплуатации, установленных техническими условиями и настоящим РЭ.
- **5.3. Гарантийный срок** устройства составляет 5 лет со дня отгрузки. При условии выполнения потребителем плановых профилактических обслуживаний оборудования срок эксплуатации терминала составляет не менее 25 лет.
- **5.4.** Гарантии предприятия-изготовителя не распространяются на устройства, имеющие механические повреждения, а также при нарушении условий эксплуатации оборудования (воздействие повышенных величин напряжения, тока, уровня помех, попадание влаги и посторонних токопроводящих материалов, предметов внутрь корпуса и пр.).
- **5.5. При возврате предприятию-изготовителю** устройство должно быть в упаковке, обеспечивающей сохранность устройства во время хранения и транспортировки.

ПРИЛОЖЕНИЯ

Приложение 1 – Структура условного обозначения

Структура условного обозначения терминалов серии МИР состоит из одного пункта, указывающего тип корпуса

мир ①

Пример: МИР 50, МИР 100, МИР 200, МИР 300

Таблица П1.1. Структурное обозначение терминалов серии «МИР»

① – Тип терминала	
50	Исполнение терминала в корпусе МИР 50.
100	Исполнение терминала в корпусе МИР 100.
200	Исполнение терминала в корпусе МИР 200.
300	Исполнение терминала в корпусе МИР 300.

Приложение 2 – Внешний вид, габаритные, установочные и присоединительные размеры

Выносной дисплей

Рис. П2.1. Исполнение выносного дисплея для терминалов серии «МИР»

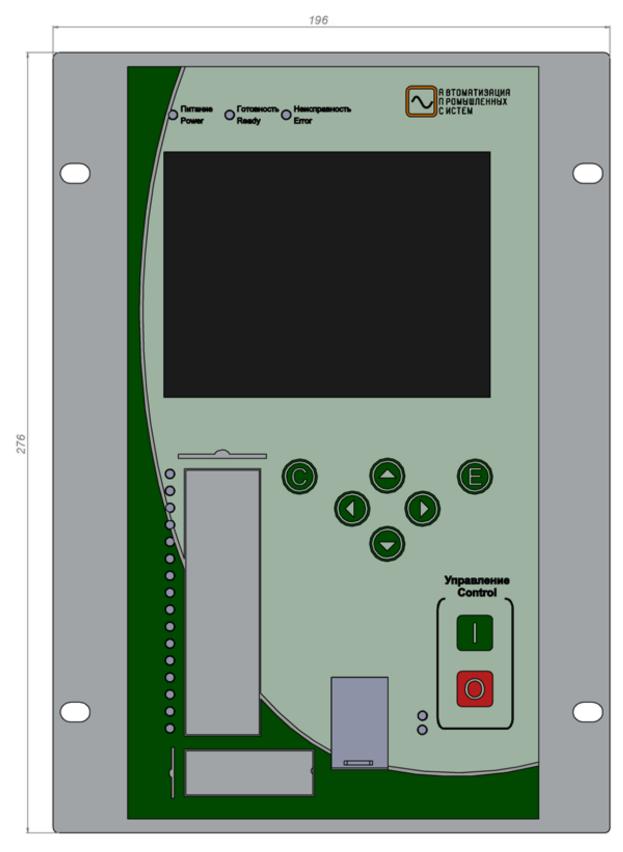


Рис. П2.2. Чертеж передней части выносного дисплея

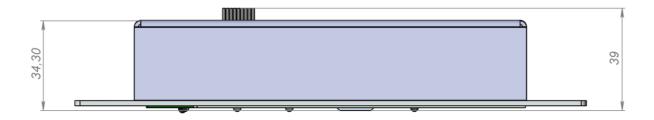


Рис. П2.3. Чертеж верхней части выносного дисплея

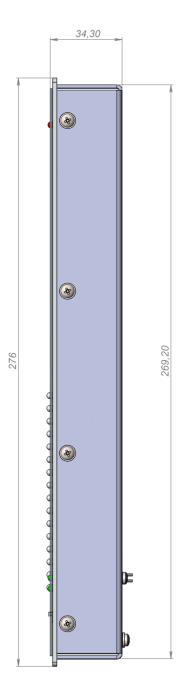


Рис. П2.4. Чертеж боковой части выносного дисплея

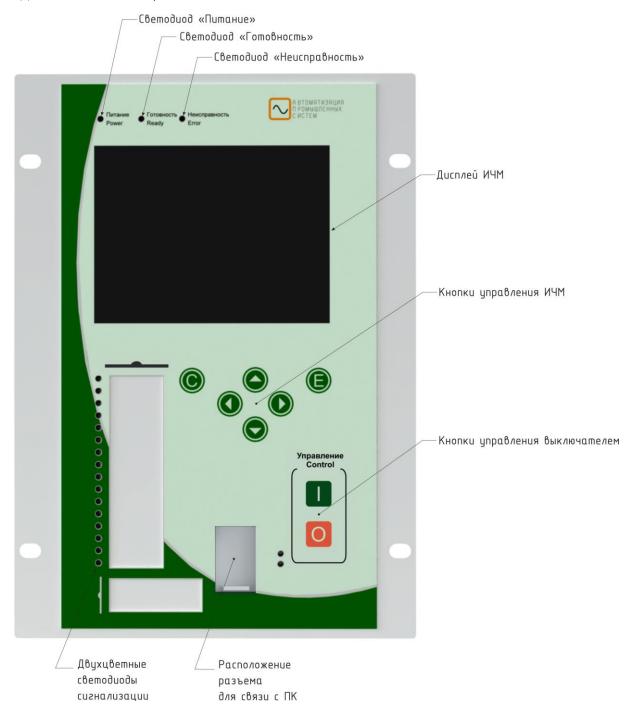


Рис. П2.5. Расположение элементов управления и индикации терминала «МИР 100»

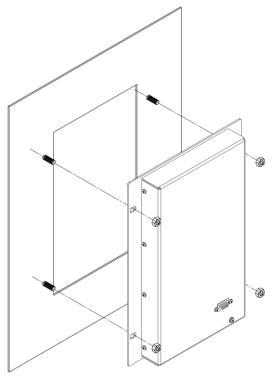
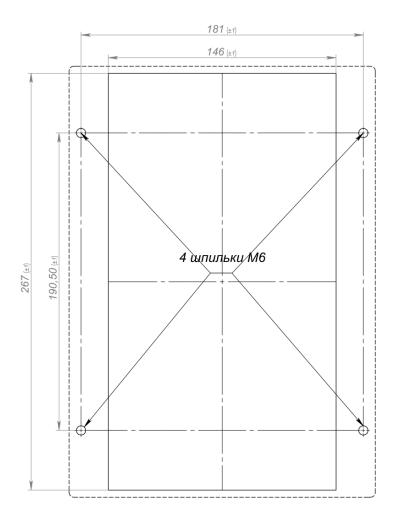



Рис. П2.6. CutOut крепления выносного дисплея с внутренней стороны шкафа

Рис. П2.7. Монтажные отверстия для установки выносного дисплея с внутренней стороны шкафа

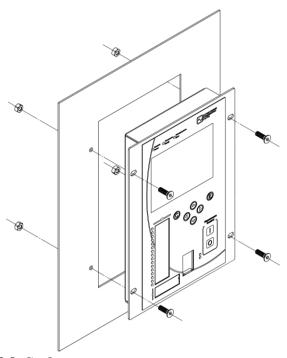


Рис. П2.8. CutOut крепления выносного дисплея с внешней стороны шкафа

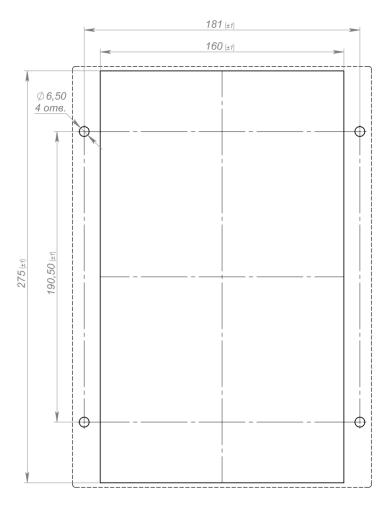


Рис. П2.9. Монтажные отверстия для установки выносного дисплея с внешней стороны шкафа

МИР 50 Выносной дисплей

Рис. П2.10. Исполнение терминала «МИР 50» с выносным дисплеем

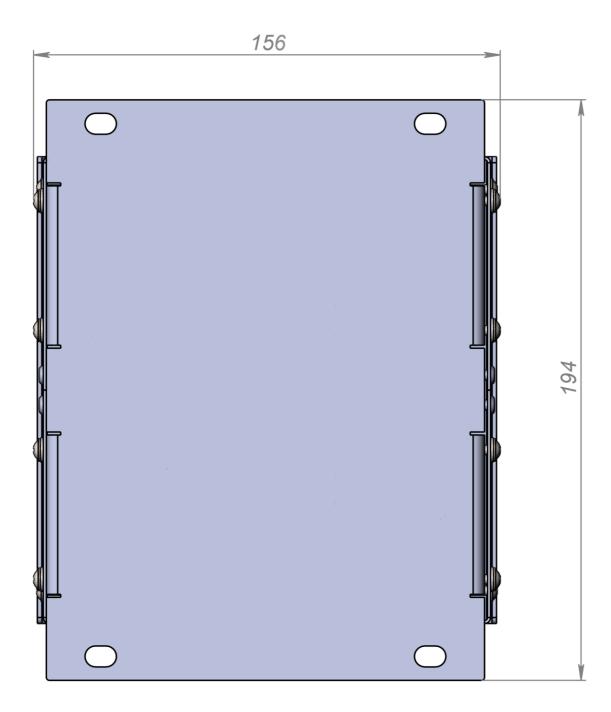


Рис. П2.11. Чертеж передней части корпуса терминала «МИР 50» с выносным дисплеем

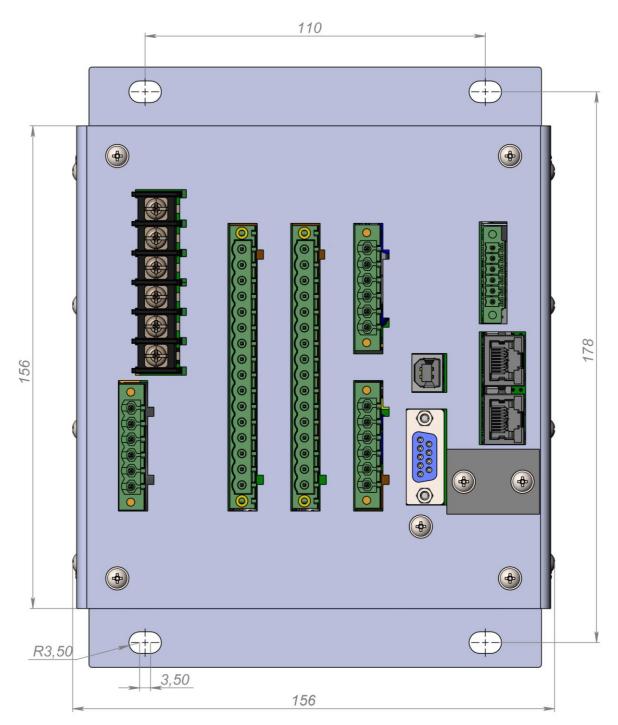


Рис. П2.12. Чертеж задней части корпуса терминала «МИР 50» с выносным дисплеем

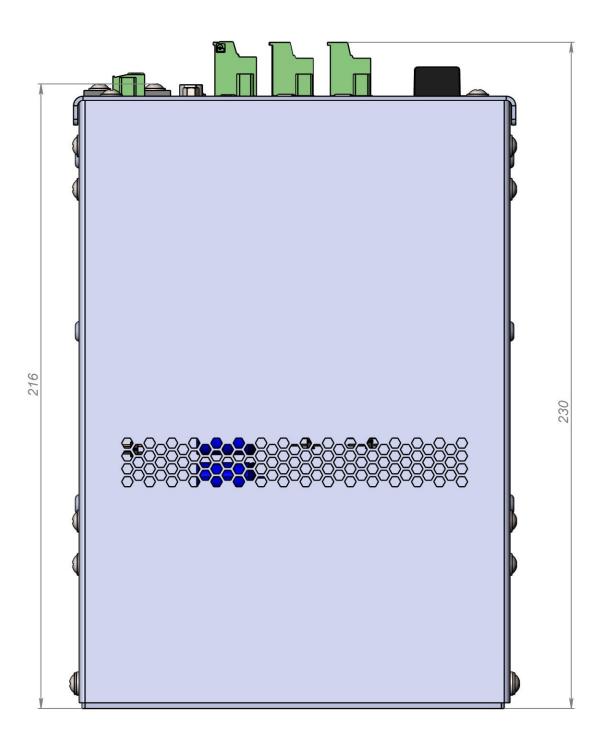


Рис. П2.13. Чертеж верхней части корпуса терминала «МИР 50» с выносным дисплеем

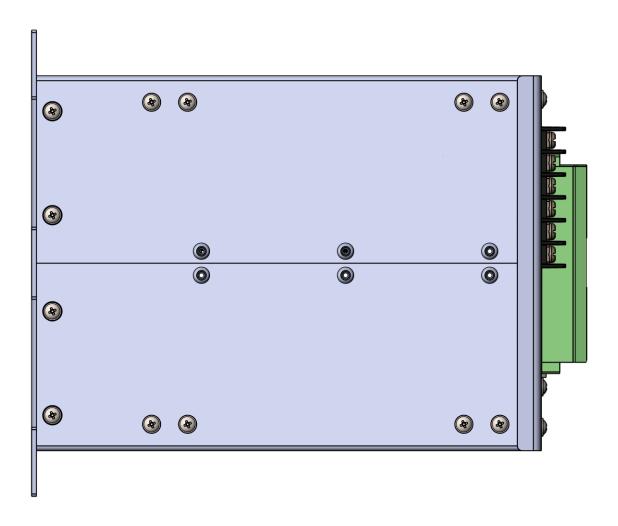
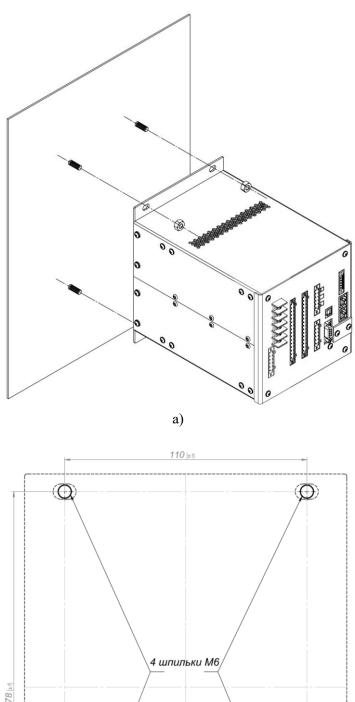
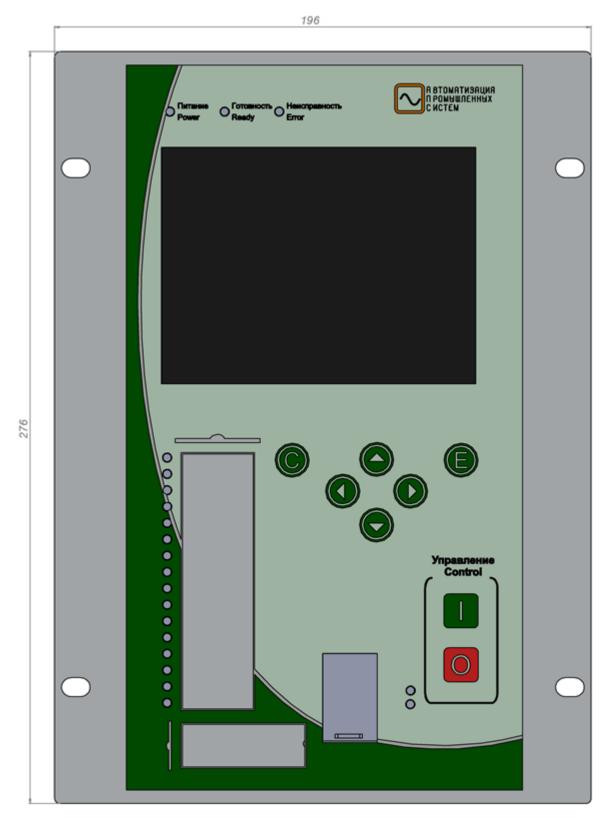



Рис. П2.14. Чертеж боковой части корпуса терминала «МИР 50» с выносным дисплеем

4 шпильки М6

б) **Рис. П2.15.** Крепление терминала «МИР 50» с выносным дисплеем а) CutOut б) Монтажные отверстия для установки терминала


МИР 100

Стационарный дисплей

Рис. П2.16. Исполнение терминала «МИР 100» со стационарным дисплеем

Рис. П2.17. Чертеж передней части терминала «МИР 100»

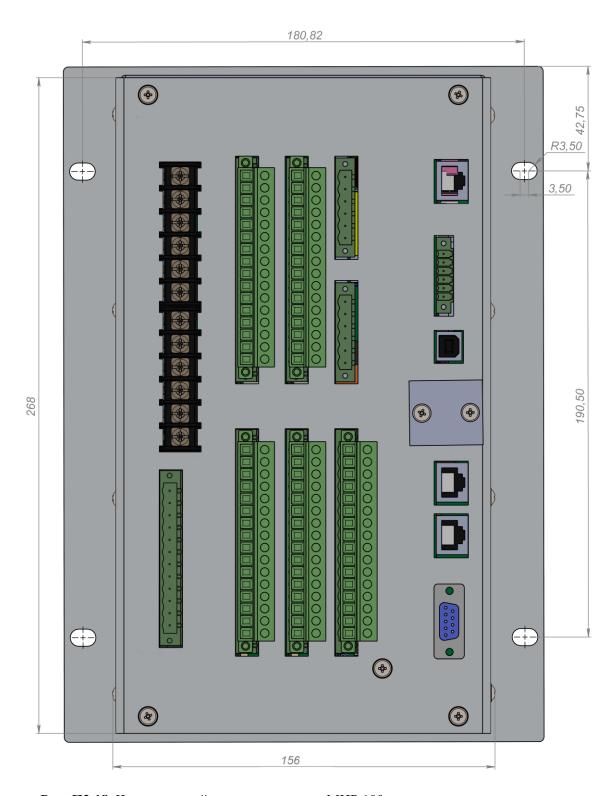
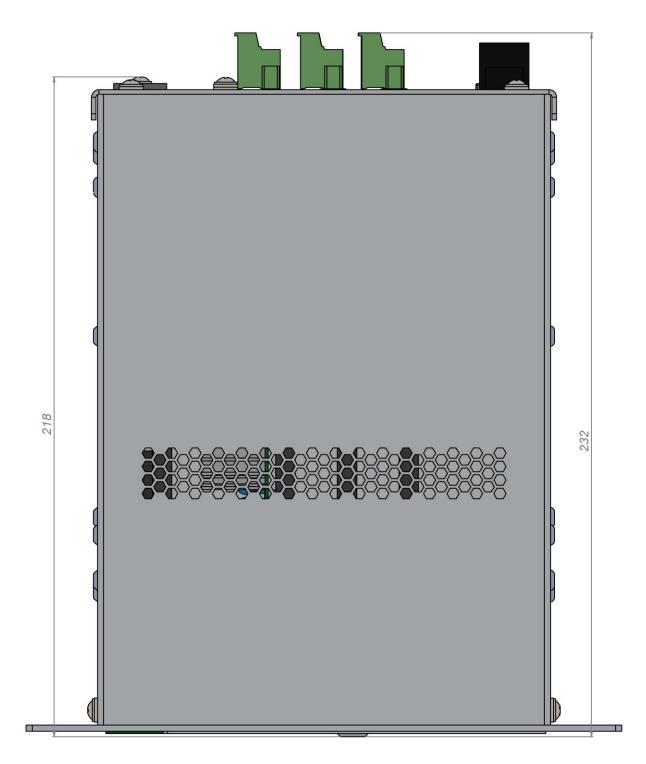



Рис. П2.18. Чертеж задней части терминала «МИР 100» со стационарным дисплеем

Рис. П2.19. Чертеж верхней части терминала «МИР 100» со стационарным дисплеем

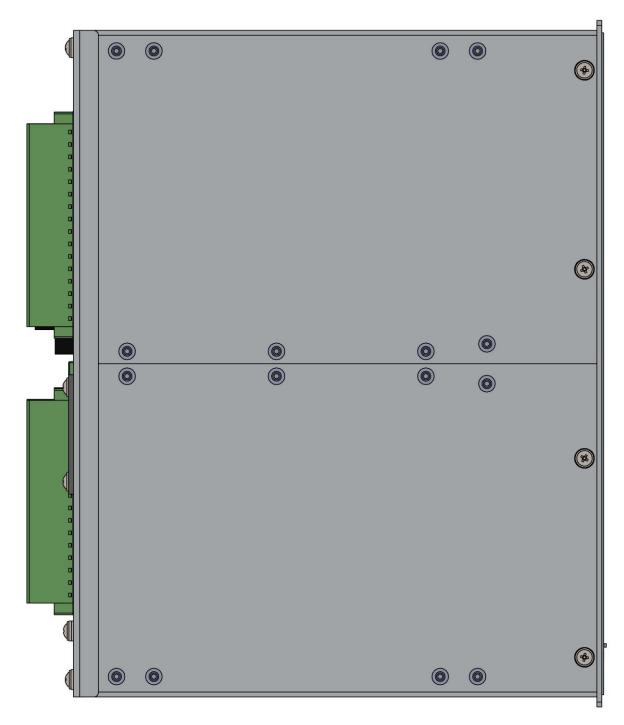
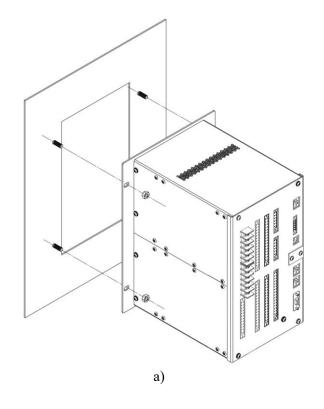
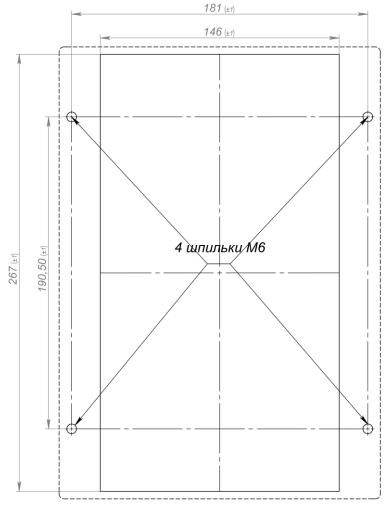
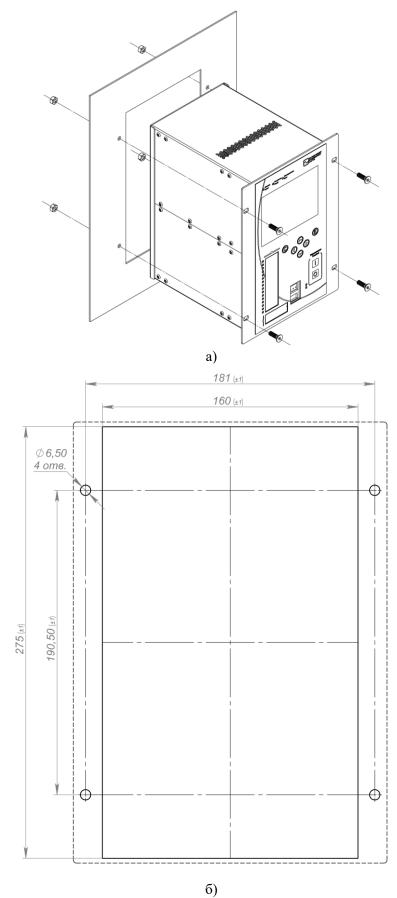




Рис. П2.20. Чертеж боковой части терминала «МИР 100» со стационарным дисплеем



б) **Рис. П2.21.** Крепление терминала «МИР 100» со стационарным дисплеем с внутренней стороны шкафа а) CutOut б) Монтажные отверстия для установки терминала

Рис. П2.22. Крепление терминала «МИР 100» со стационарным дисплеем с внешней стороны шкафа а) CutOut б) Монтажные отверстия для установки терминала

Выносной дисплей

Рис. П2.23. Исполнение терминала «МИР 100» с выносным дисплеем

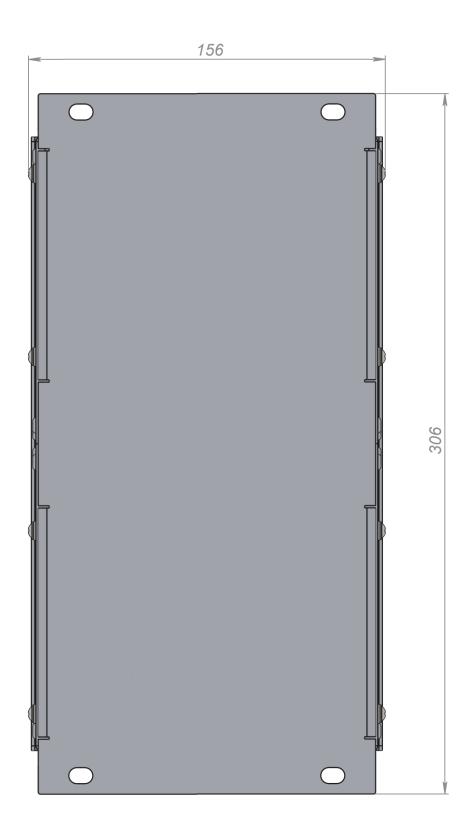


Рис. П2.24. Чертеж передней части корпуса терминала «МИР 100» с выносным дисплеем

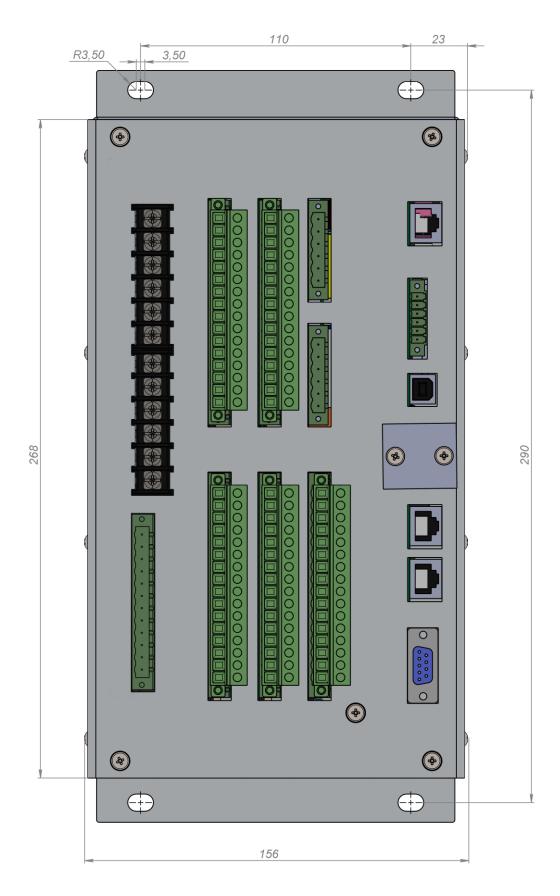


Рис. П2.25. Чертеж задней части корпуса терминала «МИР 100» с выносным дисплеем

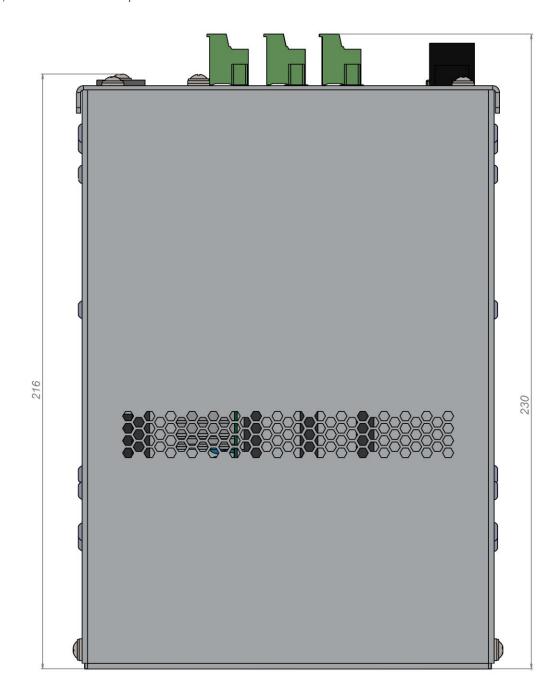


Рис. П2.26. Чертеж верхней части корпуса терминала «МИР 100» с выносным дисплеем

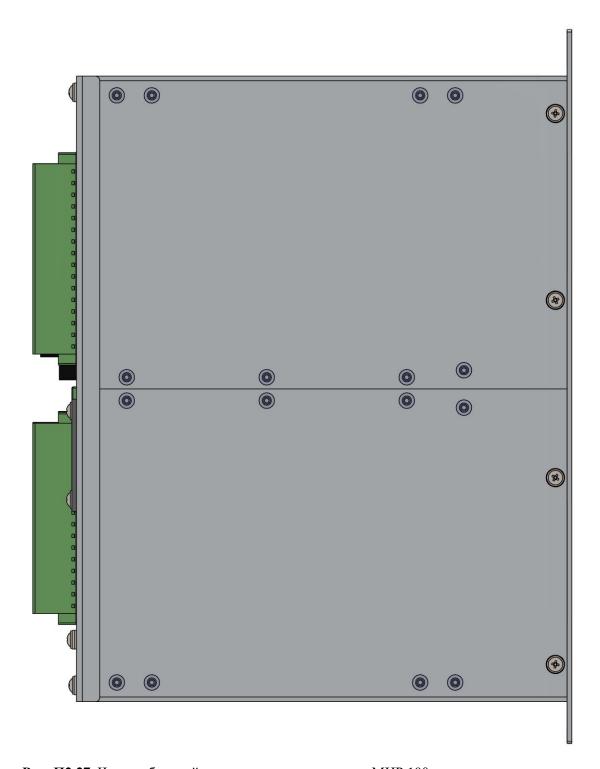
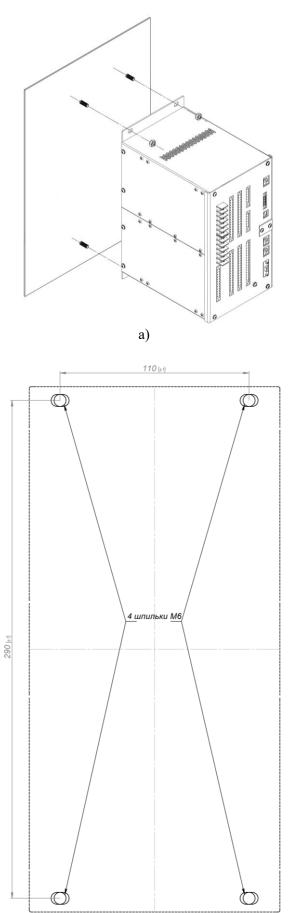



Рис. II2.27. Чертеж боковой части корпуса терминала «МИР 100» с выносным дисплеем

б) **Рис. П2.28.** Крепление терминала «МИР 100» с выносным дисплеем а) CutOut б) Монтажные отверстия для установки терминала

МИР 200

Стационарный дисплей

Рис. П2.29. Исполнение терминала «МИР 200» со стационарным дисплеем

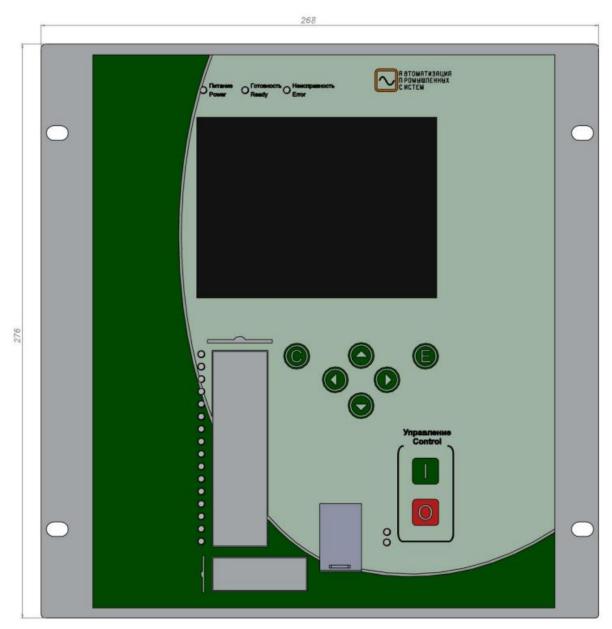


Рис. П2.30. Чертеж передней части терминала «МИР 200» со стационарным дисплеем

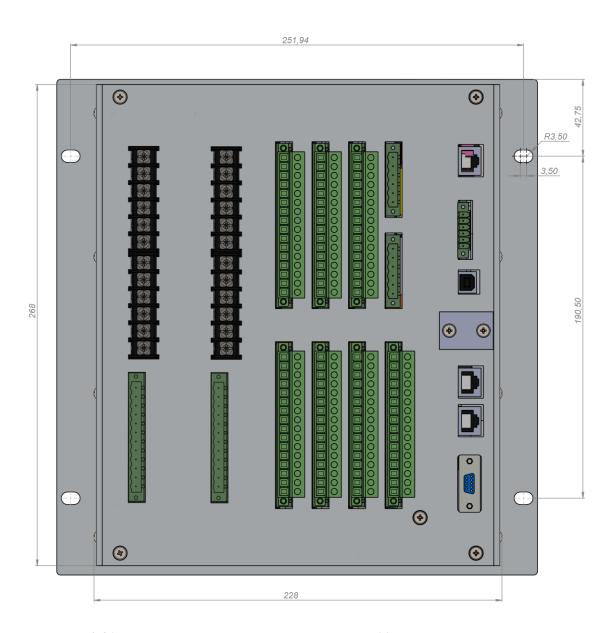


Рис. П2.31. Чертеж задней части терминала «МИР 200» со стационарным дисплеем

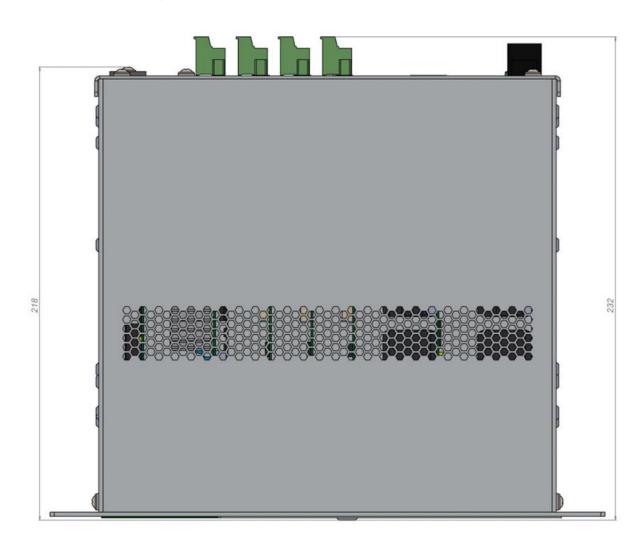


Рис. П2.32. Чертеж верхней части терминала «МИР 200» со стационарным дисплеем

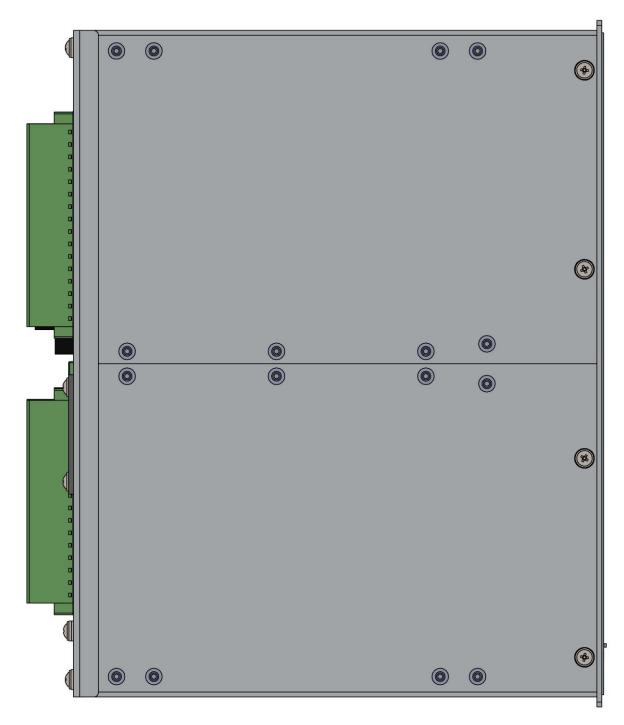
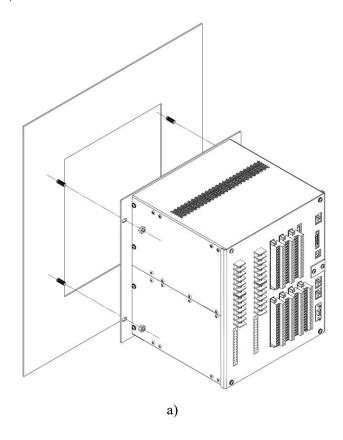
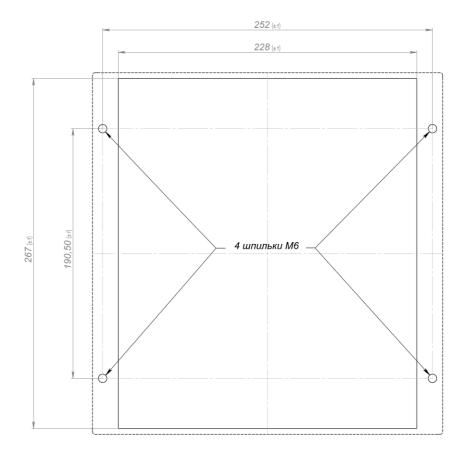
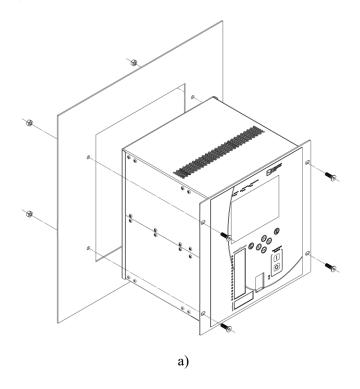
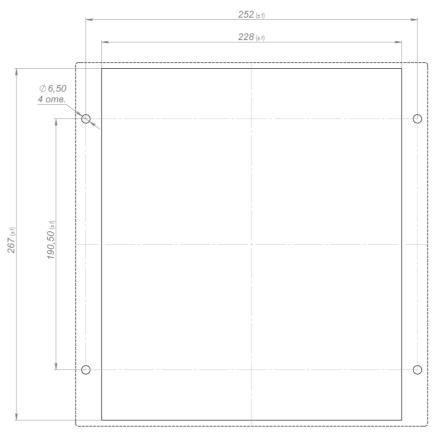




Рис. П2.33. Чертеж боковой части терминала «МИР 200» со стационарным дисплеем





б) **Рис. П2.34.** Крепление терминала «МИР 200» со стационарным дисплеем с внутренней стороны шкафа а) CutOut б) Монтажные отверстия для установки терминала

б) **Рис. П2.35.** Крепление терминала «МИР 200» со стационарным дисплеем с внешней стороны шкафа а) CutOut б) Монтажные отверстия для установки терминала

Выносной дисплей

Рис. П2.36. Исполнение терминала «МИР 200» с выносным дисплеем

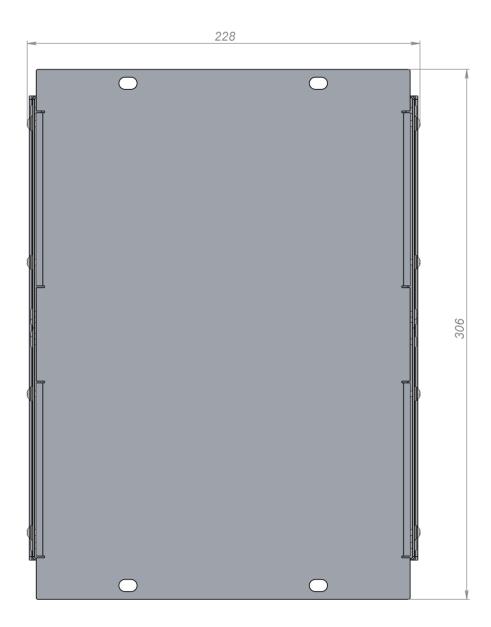


Рис. П2.37. Чертеж передней части корпуса терминала «МИР 200» с выносным дисплеем

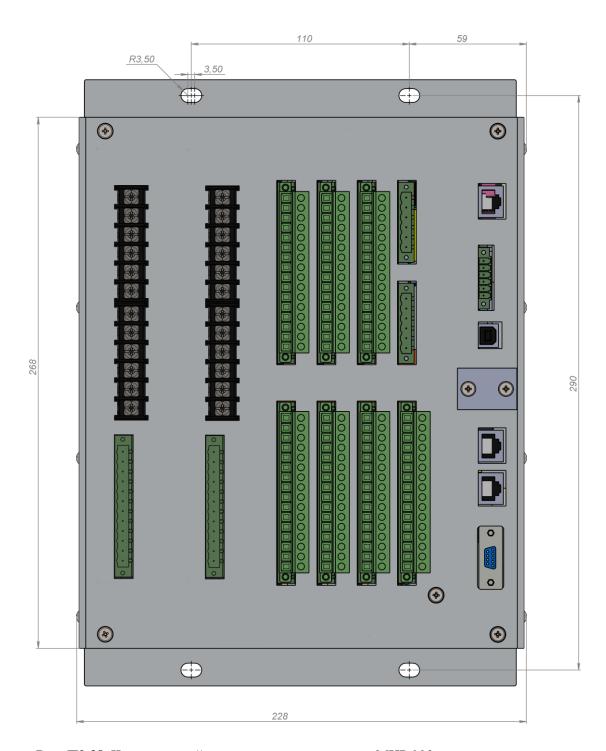


Рис. П2.38. Чертеж задней части корпуса терминала «МИР 200» с выносным дисплеем

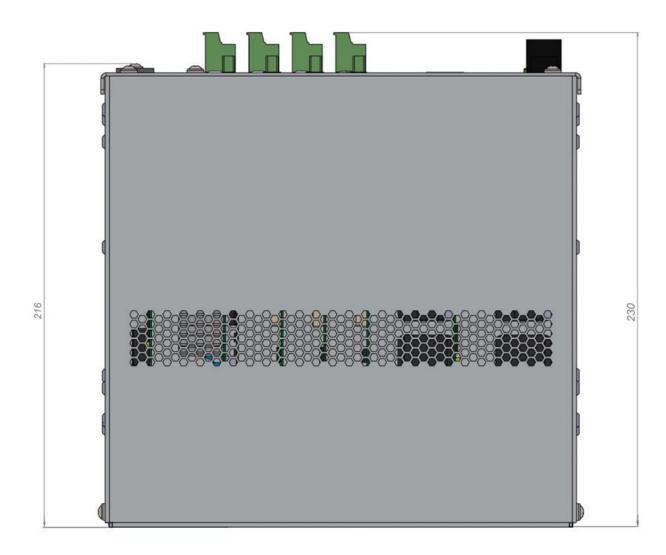


Рис. П2.39. Чертеж верхней части корпуса терминала «МИР 200» с выносным дисплеем

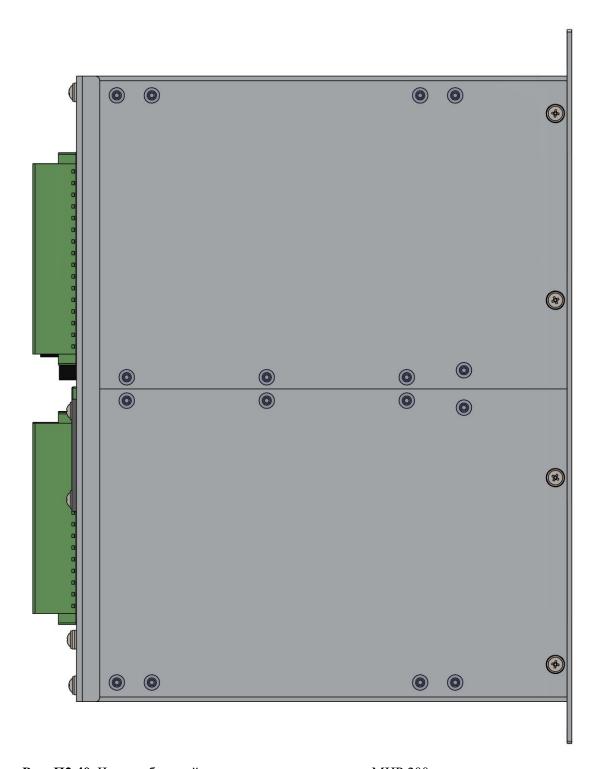
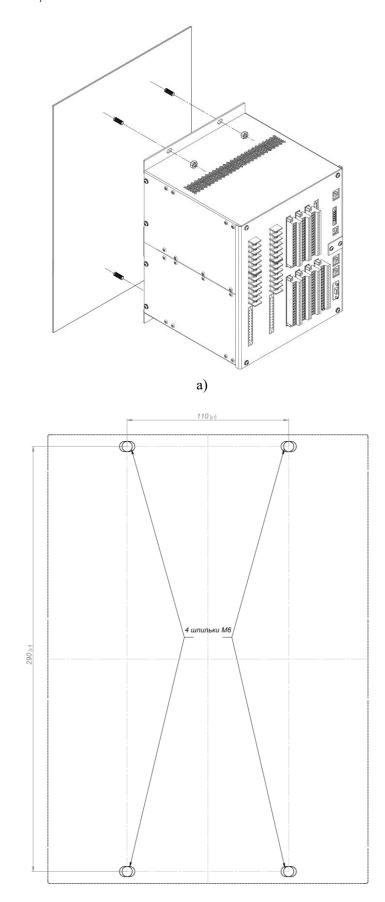



Рис. П2.40. Чертеж боковой части корпуса терминала «МИР 200» с выносным дисплеем

б) **Рис. П2.41.** Крепление терминала «МИР 100» с выносным дисплеем а) CutOut б) Монтажные отверстия для установки терминала

МИР 300

Выносной дисплей

Рис. П2.42. Исполнение терминала «МИР 300» с выносным дисплеем

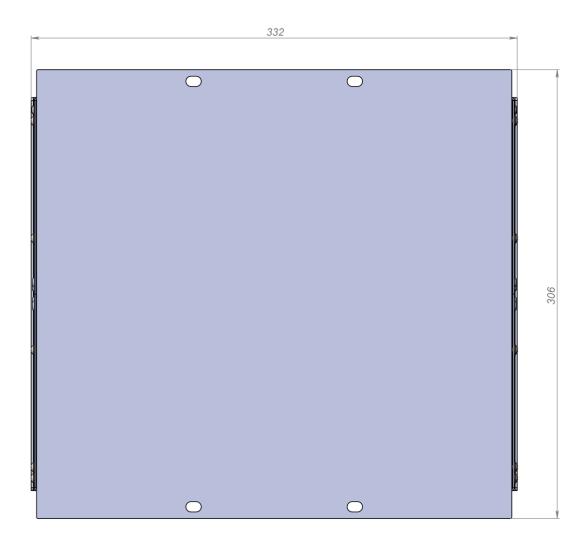


Рис. П2.43. Чертеж передней части корпуса терминала «МИР 300» с выносным дисплеем

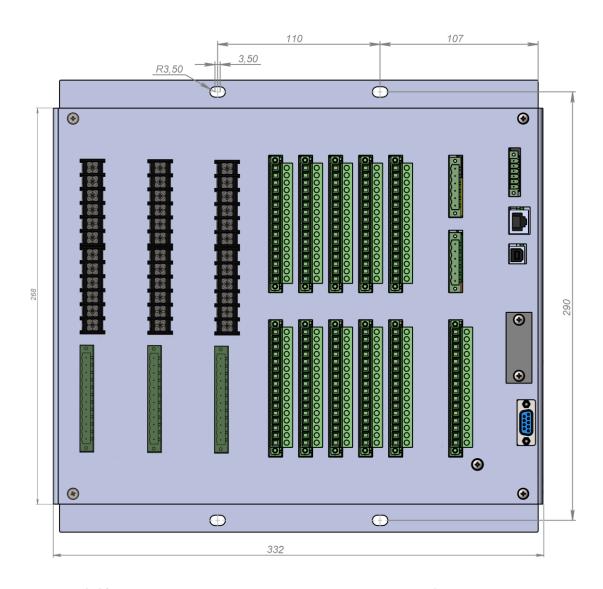


Рис. П2.44. Чертеж задней части корпуса терминала «МИР 300» с выносным дисплеем

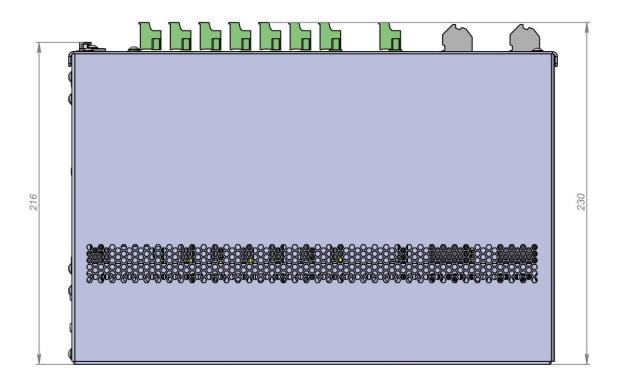


Рис. П2.45. Чертеж верхней части корпуса терминала «МИР 300» с выносным дисплеем

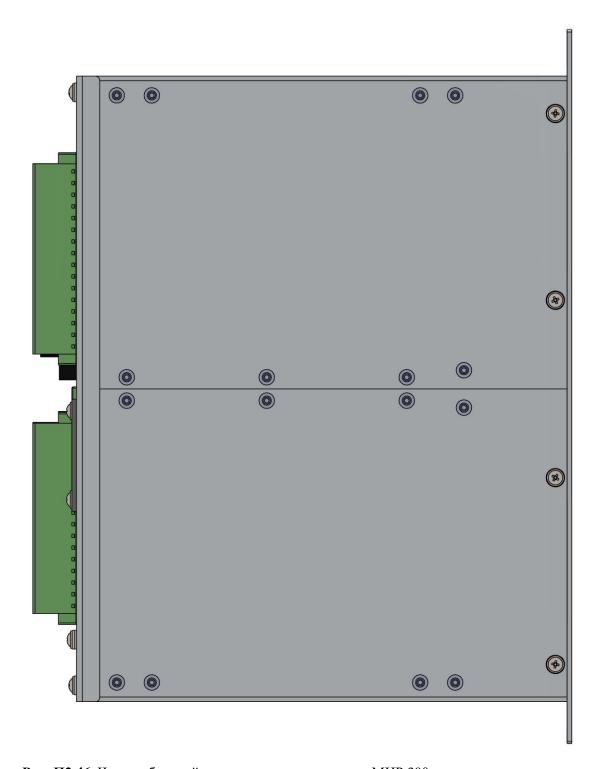
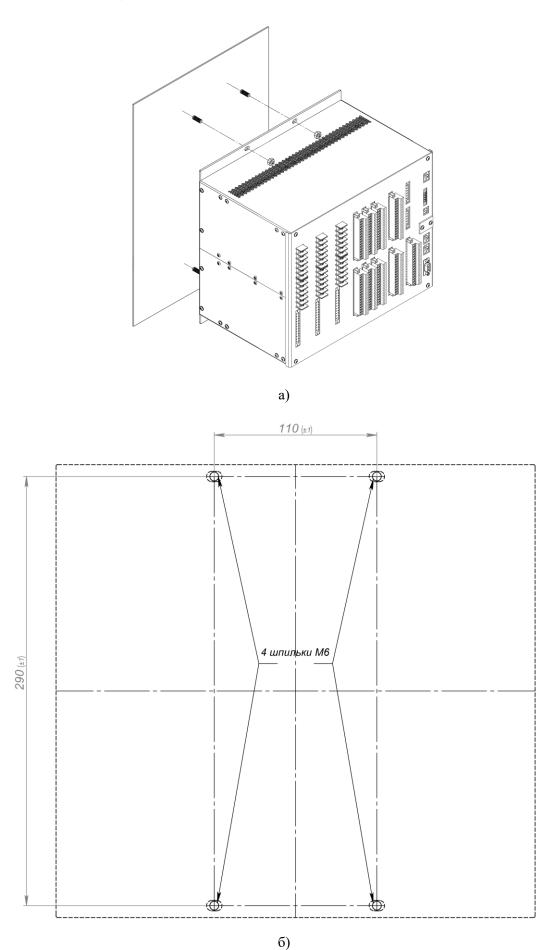



Рис. П2.46. Чертеж боковой части корпуса терминала «МИР 300» с выносным дисплеем

Рис. П2.47. Крепление терминала «МИР 300» с выносным дисплеем а) CutOut б) Монтажные отверстия для установки терминала

Приложение 3 – Стандартная схема подключения

Приведены рекомендуемые примеры подключения терминалов. Устройства имеют гибкую логику и при необходимости схема подключения может быть изменена. Более подробные примеры схем представлены в сборниках типовых исполнений различных подстанций.

P3A

Тип 1. Стандартные присоединения

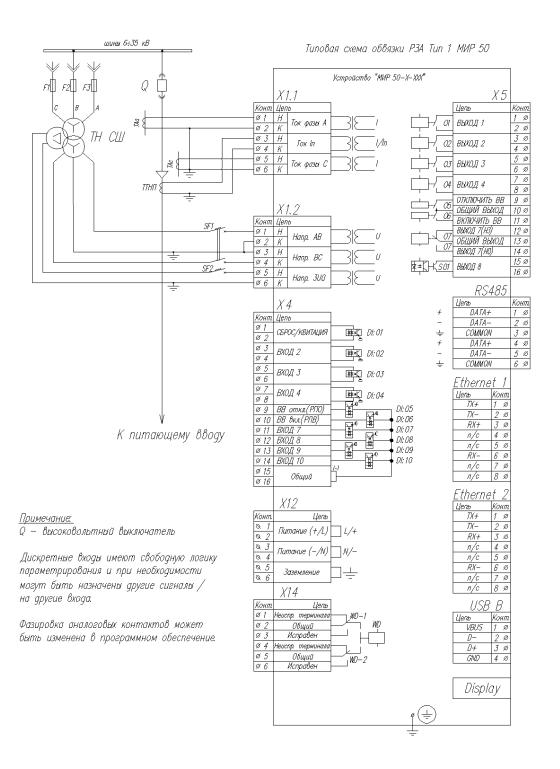


Рис. ПЗ.1. Стандартная схема подключения РЗА тип 1 «МИР 50» с линейным напряжением

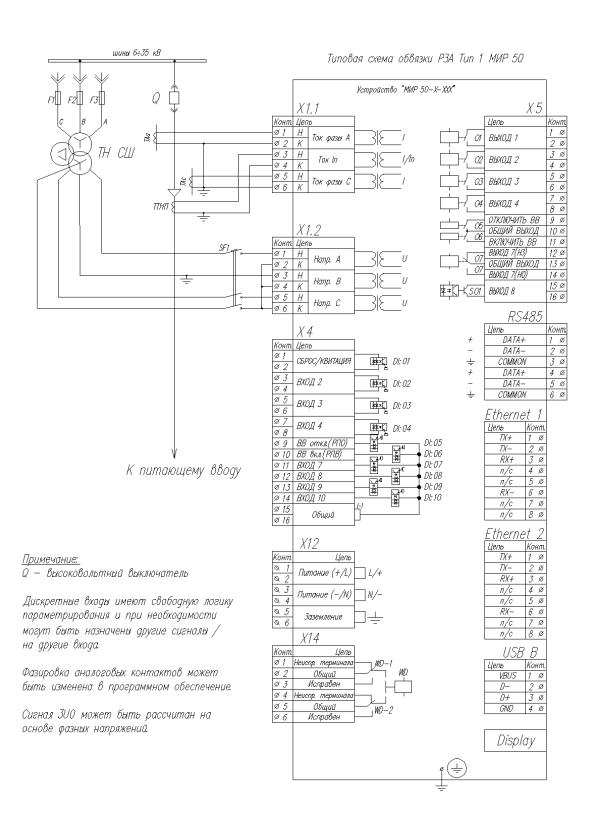


Рис. ПЗ.2. Стандартная схема подключения РЗА тип 1 «МИР 50» с фазным напряжением

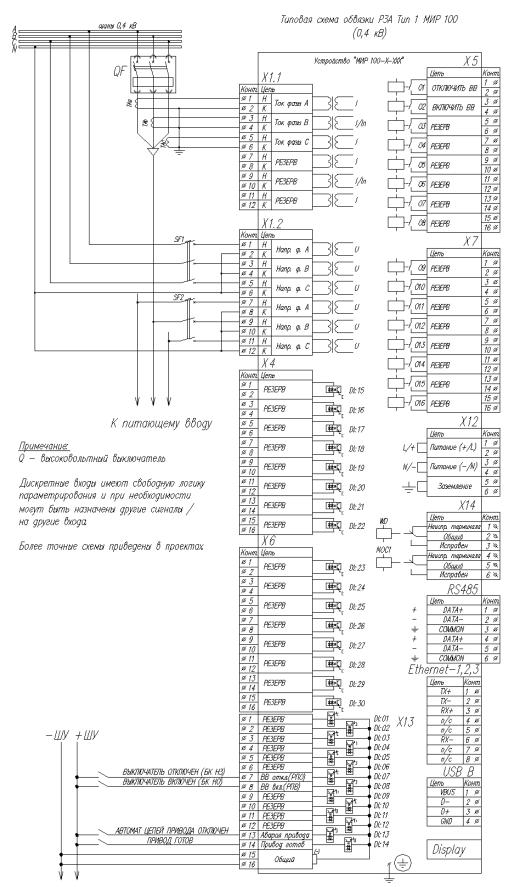


Рис. ПЗ.3. Стандартная схема подключения РЗА тип 1 «МИР 100» на напряжение 0,4 кВ

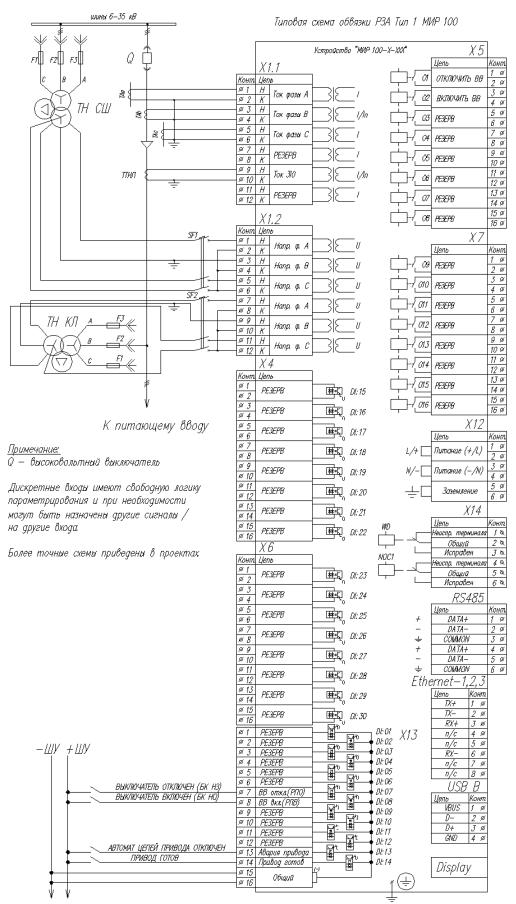
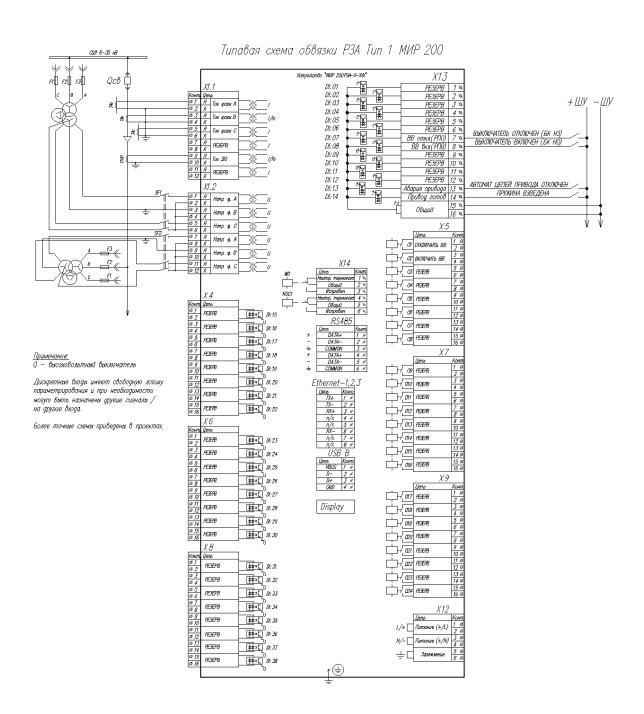



Рис. **ПЗ.4.** Стандартная схема подключения РЗА тип 1 «МИР 100» на напряжение 6÷35 кВ

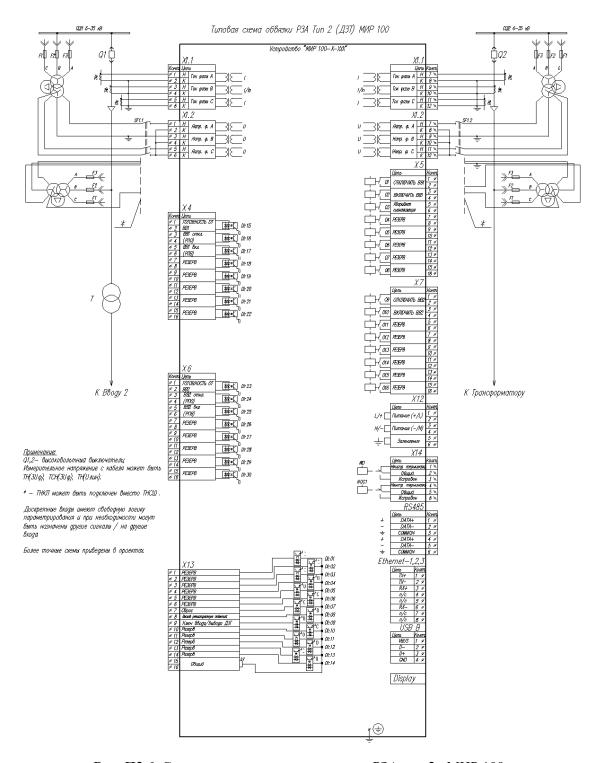
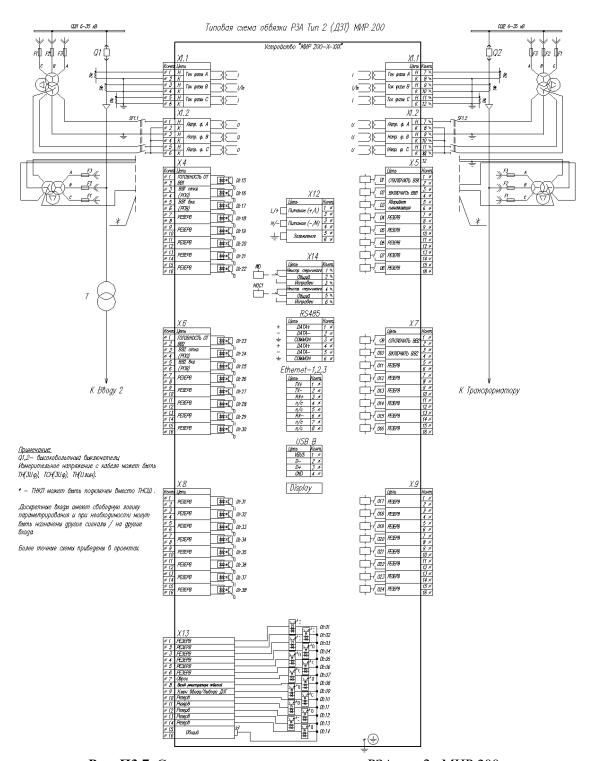
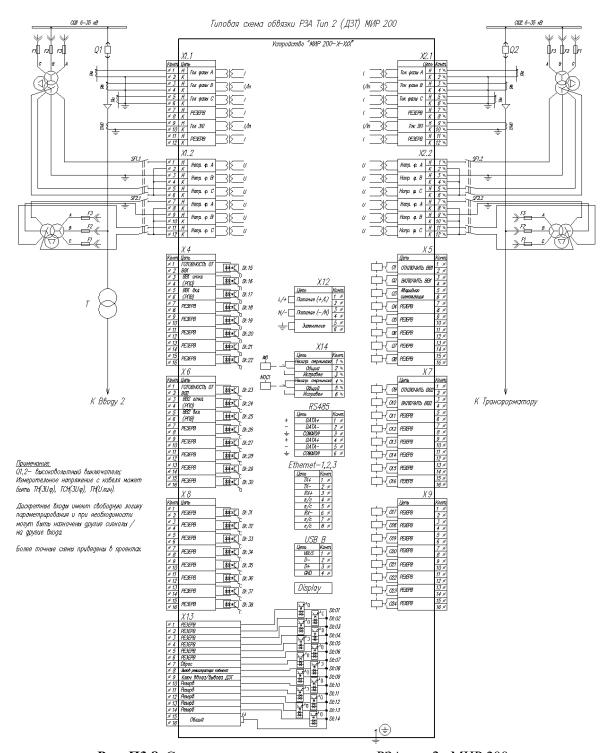


Рис. П3.5. Стандартная схема подключения РЗА тип 1 «МИР 200» с одной аналоговой платой

Тип 2 (ДЗТ). Дифференциальная защита трансформатора

Рис. П3.6. Стандартная схема подключения РЗА тип 2 «МИР 100» для двухобмоточных трансформаторов

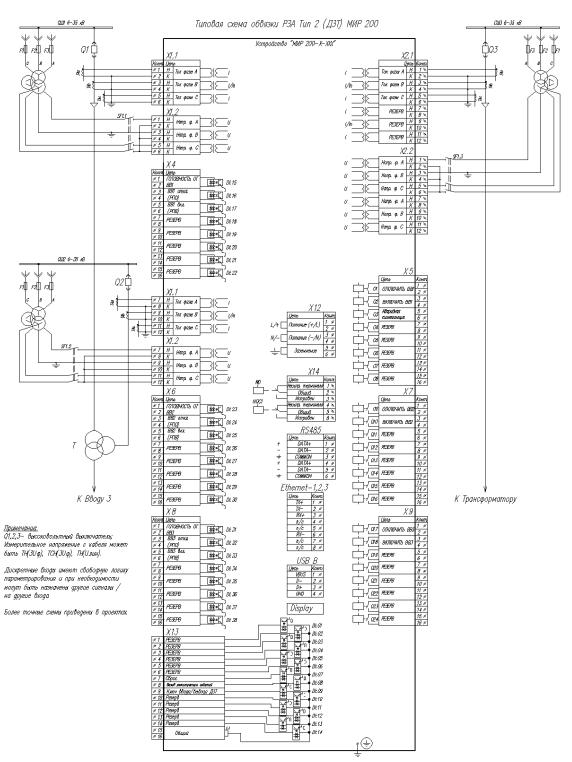

Рис. П3.7. Стандартная схема подключения РЗА тип 2 «МИР 200» с одной аналоговой платой для двухобмоточных трансформаторов

Рис. ПЗ.8. Стандартная схема подключения РЗА тип 2 «МИР 200» с двумя аналоговыми платами для двухобмоточных трансформаторов

Рис. ПЗ.9. Стандартная схема подключения РЗА тип 2 «МИР 200» с двумя аналоговыми платами для трехбмоточных трансформаторов

Тип 3 (ДЗМ). Дифференциальная защита двигателя

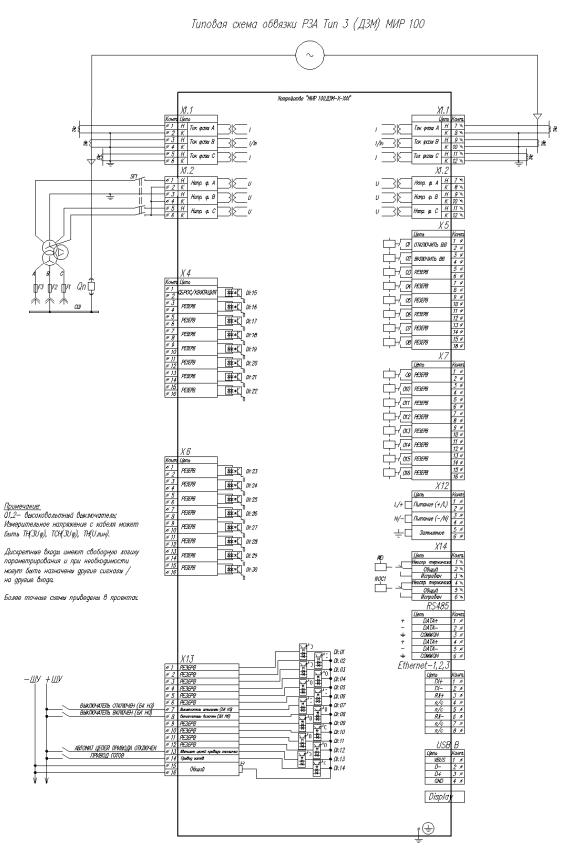
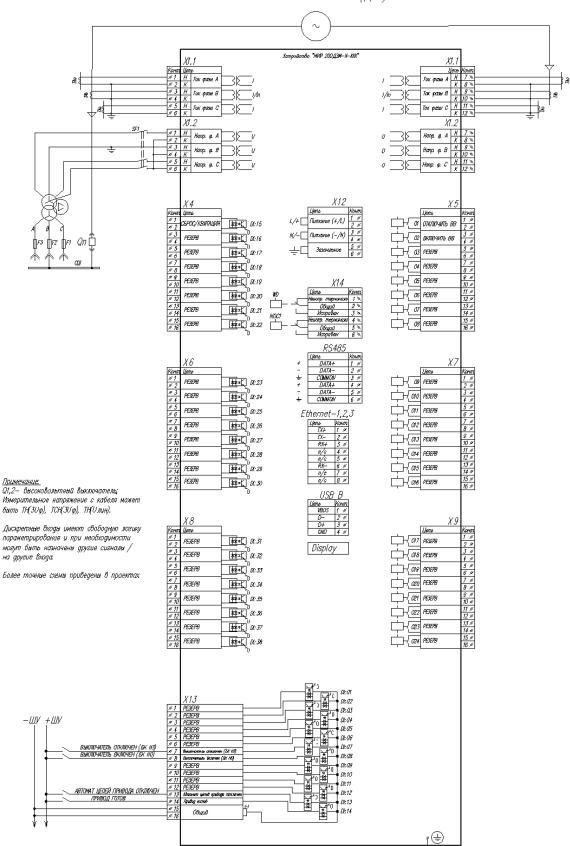



Рис. П3.10. Стандартная схема подключения РЗА тип 3 «МИР 100»

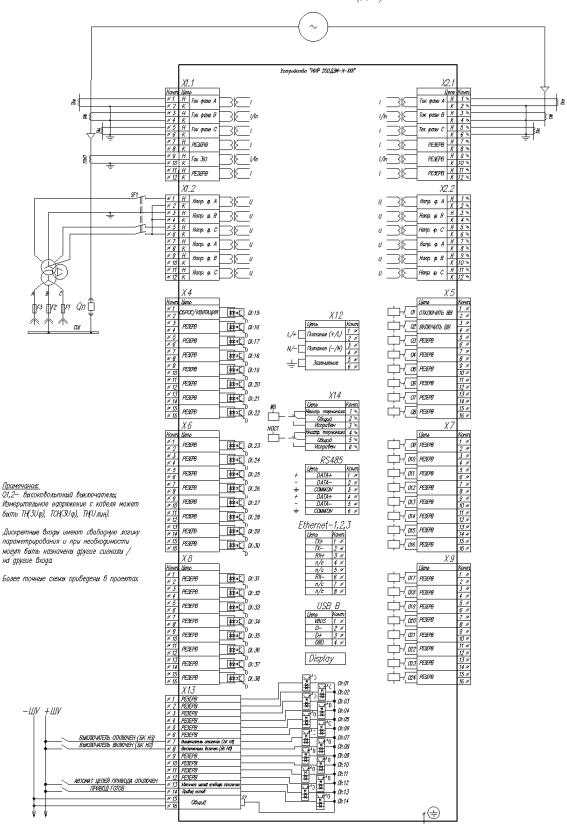

Типовая схема обвязки РЗА Тип 3 (ДЗМ) МИР 200

Рис. ПЗ.11. Стандартная схема подключения РЗА тип 3 «МИР 200» с одной аналоговой платой

Типовая схема обвязки РЗА Тип 3 (ДЗМ) МИР 200

Рис. П3.12. Стандартная схема подключения РЗА тип 3 «МИР 200» с двумя аналоговыми платами

Тип 4 (УСК). Устройства синхронной коммутации

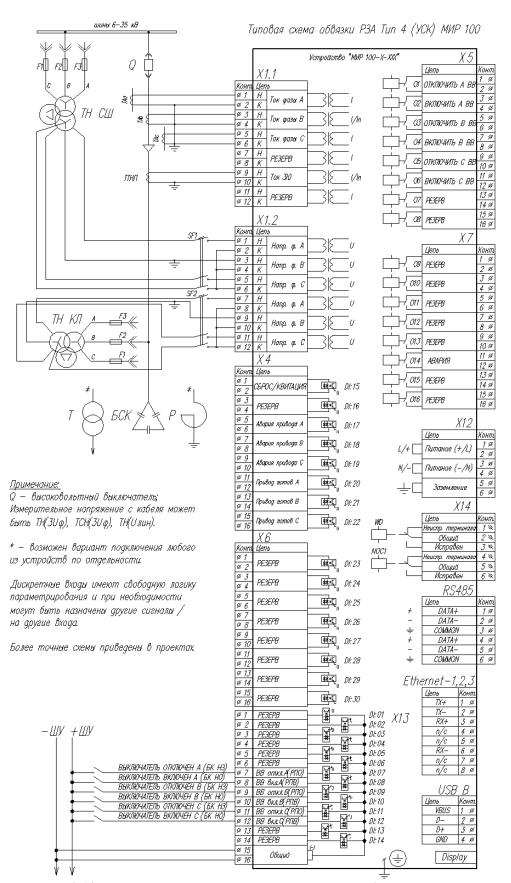
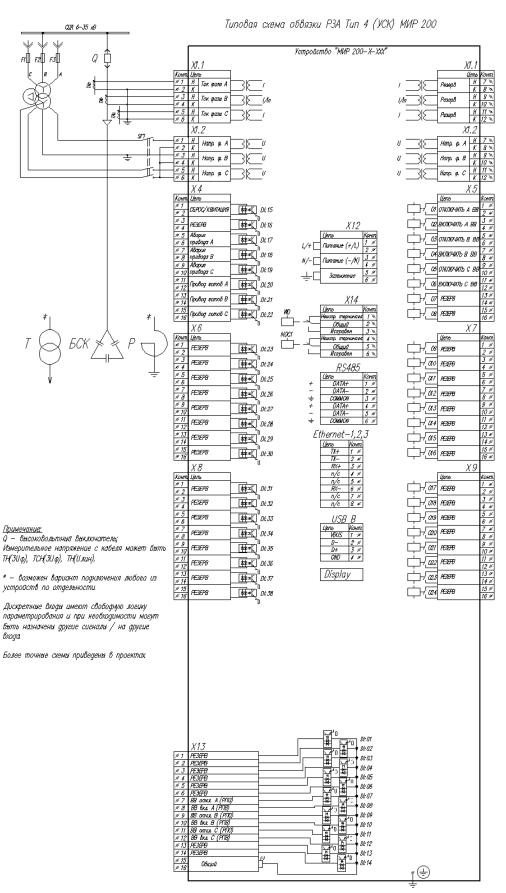



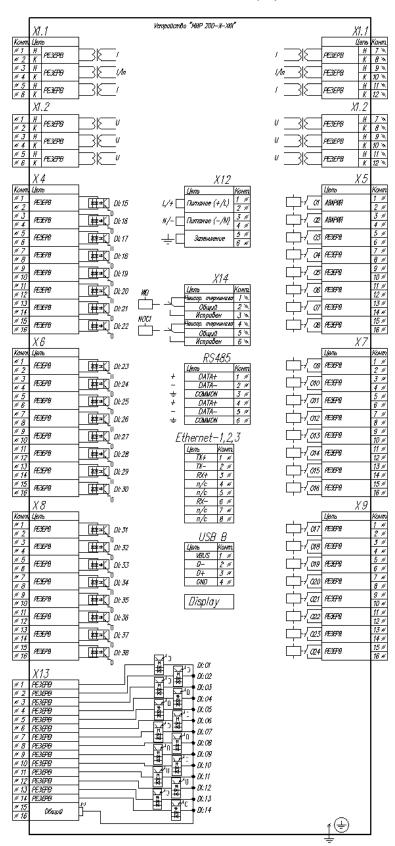
Рис. П3.13. Стандартная схема подключения РЗА тип 4 «МИР 100»

Рис. П3.14. Стандартная схема подключения РЗА тип 4 «МИР 200» с одной аналоговой платой

. Дискретные входы имеют свободную логику параметрирования и при

необходимости могут быть

другие входа


назначены другие сигналы / на

Более точные схемы приведены в

Тип 5 (ЦС). Центральная сигнализация

Типовая схема обвязки РЗА Тип 5 (ЦС) МИР 200

Рис. П3.15. Стандартная схема подключения РЗА тип 5 «МИР 200» с одной аналоговой платой

Тип 6 (ДЗЛ). Дифференциальная защита линии

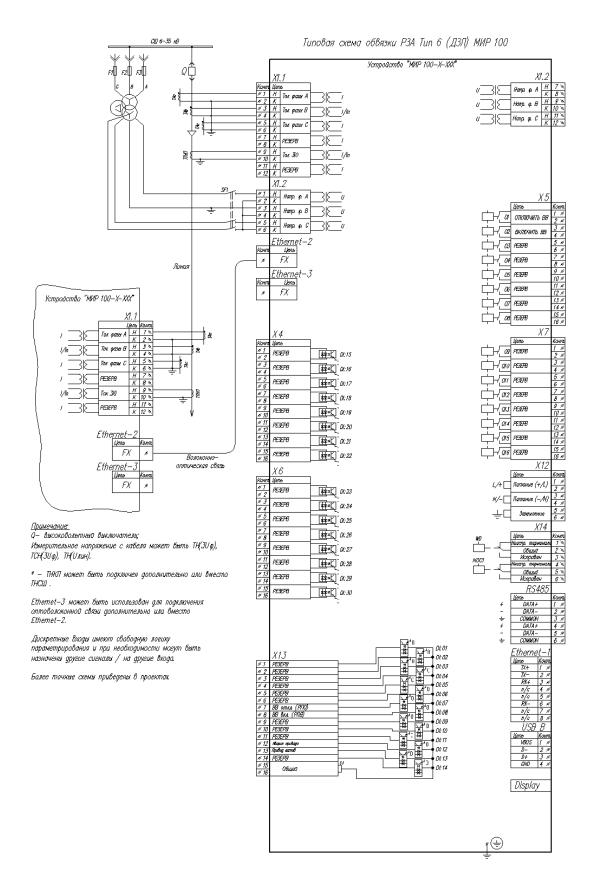
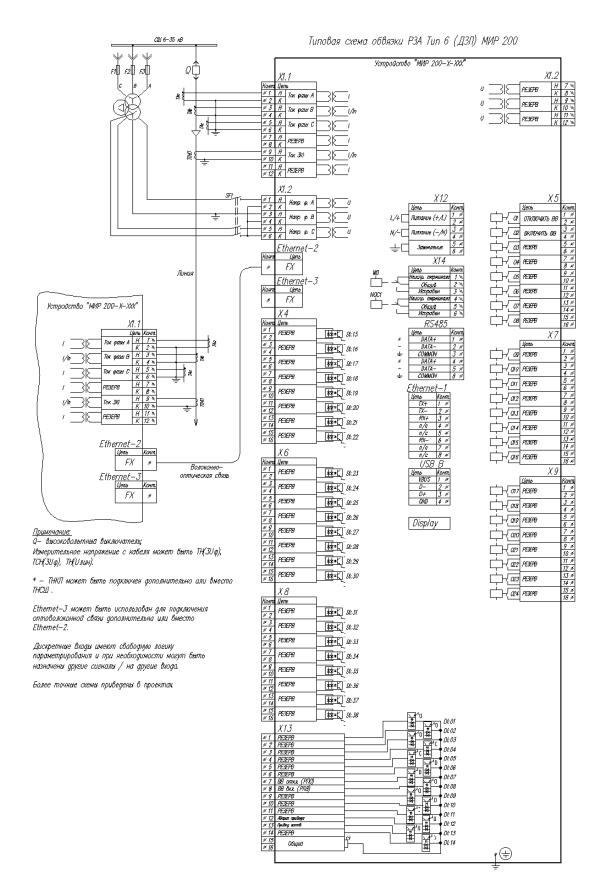
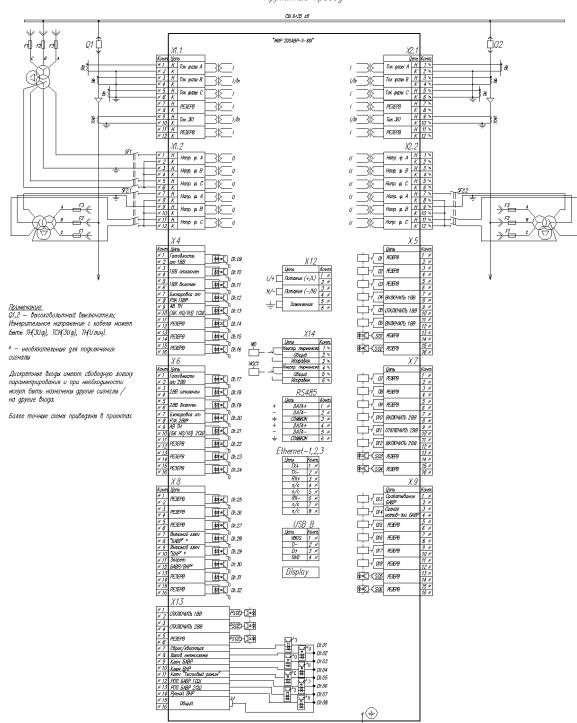



Рис. П3.16. Стандартная схема подключения РЗА тип 6 «МИР 100»


Рис. ПЗ.17. Стандартная схема подключения РЗА тип 6 «МИР 200» с одной аналоговой платой

БАВР

Тип 1. Основной и резервный ввода

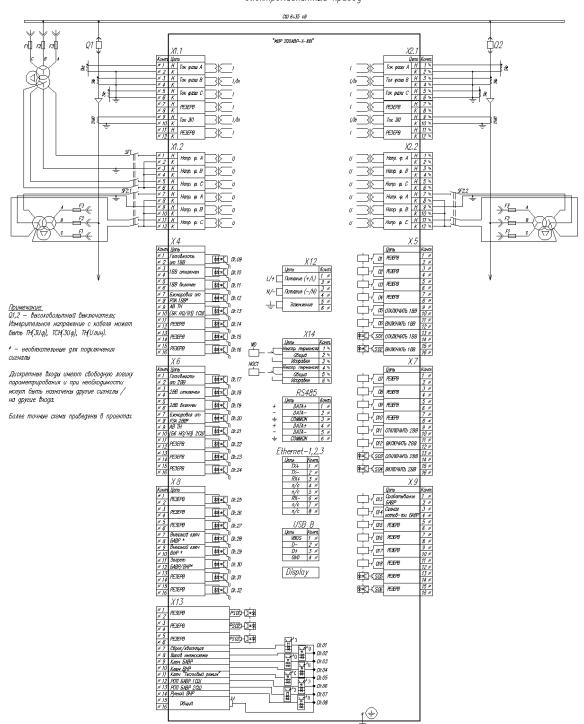

Tunoвая схема обвязки БАВР Tun 1 MVIP 200 Пружинный привод

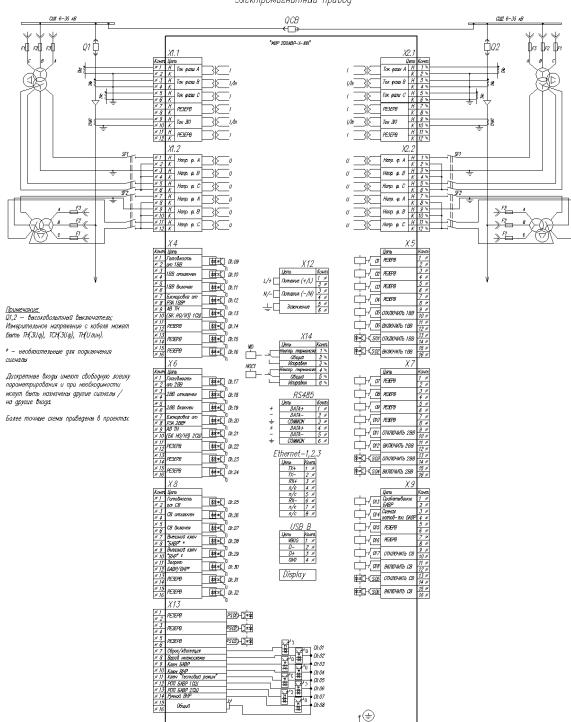
Рис. ПЗ.18. Стандартная схема подключения БАВР тип 1 «МИР 200» для выключателей с пружинным приводом

Tunoвая схема обвязки БАВР Tun 1 МИР 200 Электромагнитный привод

Рис. П3.19. Стандартная схема подключения БАВР тип 1 «МИР 200» для выключателей с электромагнитным приводом

Тип 2. Две независимые секции

Типовая схема обвязки БАВР Тип 2 МИР 200 Пружинный привод *QCB* **←□** *MMP 200ABP-X-XXX Q1 🖺 Ĥ*02* 3|{ 3|E1/An TOK GOZZEL C $\exists E'$ Гок рази С РЕЭЕРВ 315 РЕЗЕРВ 3|**=**1/tn Tox 310 Tox 310 318 X2., Напр. р. В 3|50 3|8 Напа р. В Hamp a C | U Hanp p. A 3|="0 Напр. ф. А Напр дВ $\exists \exists \exists u$ 318 Hanpa μ B Hamp p. C Hamp a C H >>^{F2} *>*^{F1} итовность от 188 **₩** • € 01:09 Of PERFE 02 FEXERS **□ □** 0:10 188 откакчен L/+ \square Rumanue (+/L) $\frac{I}{2}$ N/- \square Rumanue (-/N) $\frac{3}{4}$ 188 BKA _____- 04 BK/NO4WTb 188 ##≠K 00:12 отключить 188 Примечание: Q1,2 — высоковольтный выключатель; Измерительное напряжение с кабеля может D:13 (5K HQ/H3) 1CUI **林宝** 0:74 ______ 06 BK/IK/4WTb 188 PE3EP8 быть ТН(ЗИФ), ТСН(ЗИФ), ТН(Илин). **★★** • **K** 01:15 SOT PERSON РЕЗЕРВ * — необязательные для подключения PE3EP9 **44**≠**€** 0*0:16* \$502 PEXENT X6 Цепь Готовно am 280 Дискретные входы имеют свободную логику параметрирования и при необходимости могут быть назначены другие сигналы / на другие входа. **□ □ □** 0:17 **1** 01:18 288 отключен RS485 288 BKI **₩**≠**(** 0:19 Балее точные схемы приведены в проектах ____ ото включить 288 ******** 00:20 0:21 (5K HO/HS) 2CU (5K HO/HS) **★**≠**=**€ 0*i.22* √ 012 включить 288 PE3EPB Ethernet-1,2,3 **#**≢***** 0:23 FERENCE PERSON РЕЗЕРБ PE3EPB **★★**●K 01:24 SOA PEXERE X8 Цепь Готовность от СВ **★**‡≢(0:25 014 Сиеная вотоб-ти БАВ СВ откаючен ₩•K 0:26 **₩**≠**(** 0:27 Внешний ключ "БАВР" * Внешний ключ "ВНР" * Запрет NBUS 1 # 0- 2 # 0+ 3 # GNO 4 # **k** = K 0 α: 20 #±≠K 0:29 ф ОТТ ОПКЛЮЧИТЬ СВ **★** □ Татв включить св 5ABP/BHP Display РЕЗЕРВ \$25 PEXERS **≱**±<u>1</u> 0:32 **≢**≢£]+{*\$06 AE3676* PEJEPB X13 PSOCH THE отключить 188 9502H]±# отключить 200 PS07;1-]]=# включить св 00.07 Kany BHP Kany Teco


Рис. П3.20. Стандартная схема подключения БАВР тип 2 «МИР 200» для выключателей с пружинным приводом

ſ⊕

OGund

Tunoвая схема обвязки БАВР Tun 2 MИР 200 Электромагнитный привод

Рис. ПЗ.21. Стандартная схема подключения БАВР тип 2 «МИР 200» для выключателей с электромагнитным приводом

ABP

Тип 1. Основной и резервный ввода

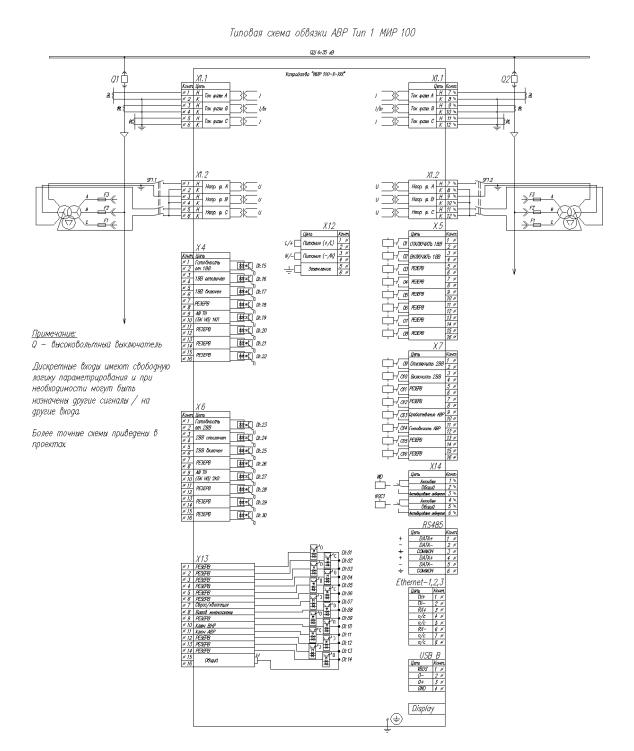
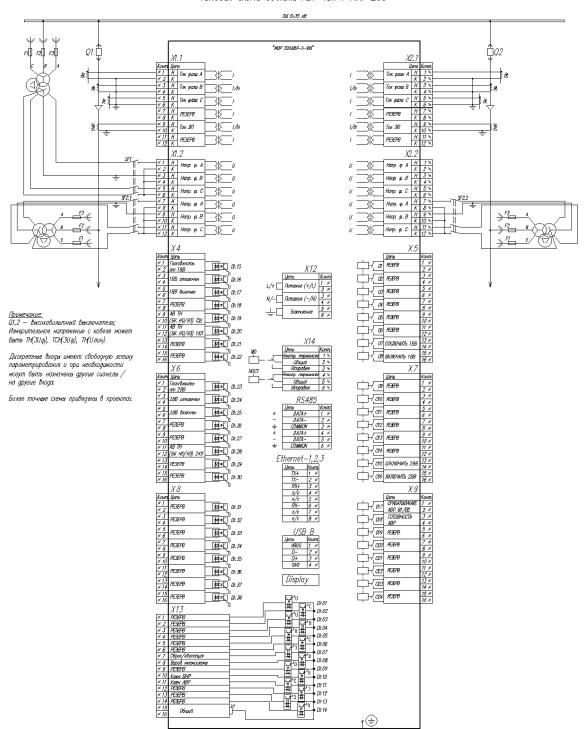



Рис. П3.22. Стандартная схема подключения ABP тип 1 «МИР 100»

Типовая схема обвязки ABP Tun 1 МИР 200

Рис. П3.23. Стандартная схема подключения ABP тип 1 «МИР 200» с двумя аналоговыми платами

Тип 2. Две независимые секции

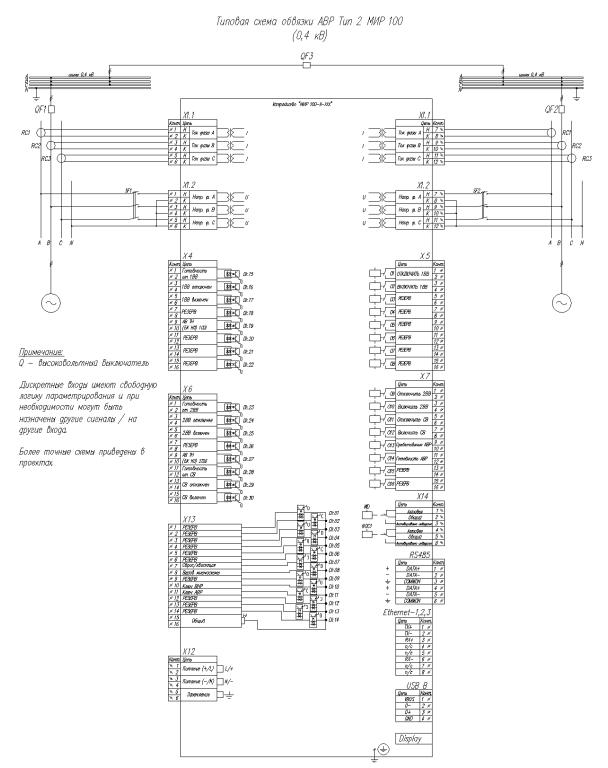


Рис. П3.24. Стандартная схема подключения ABP тип 2 «МИР 100» для сетей 0,4кВ

Типовая схема обвязки ABP Tun 2 MИР 100

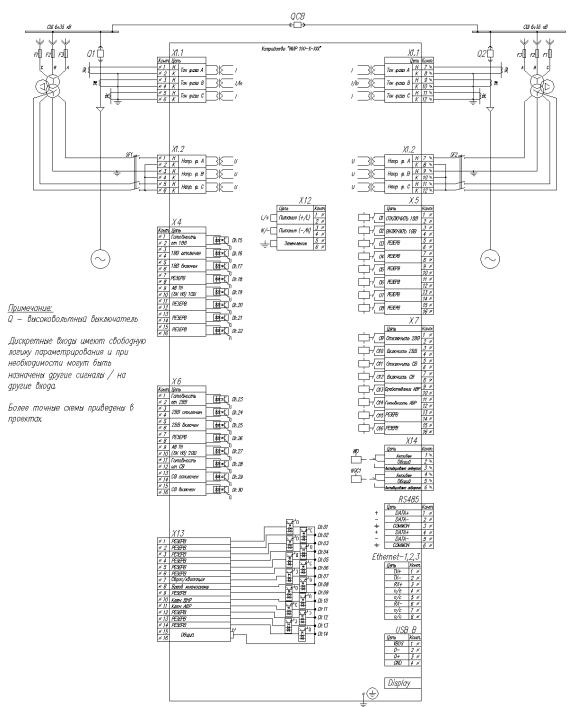
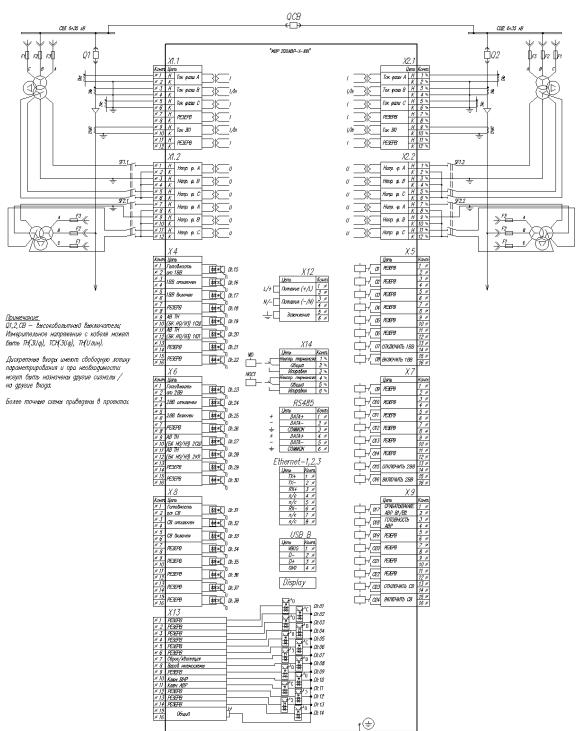



Рис. ПЗ.25. Стандартная схема подключения ABP тип 2 «МИР 100» для сетей 6÷35кВ

Типовая схема обвязки ABP Tun 2 МИР 200

Рис. П3.26. Стандартная схема подключения ABP тип 2 «МИР 200» с двумя аналоговыми платами

Приложение 4 – Обозначение контактов портов связи

Таблица П4.1. Порты связи RS-485

Це	Контакт	
	DATA +	1
RS-485-1	DATA -	2
	COMMON	3
	DATA +	4
RS-485-2	DATA -	5
	COMMON	6

Таблица П4.2. Порты связи Ethernet-T

Цеі	ТЬ	Контакт
	TX +	1
	TX -	2
	RX +	3
100 Base-T Ethernet	n/c	4
100 Base-1 Ethernet	n/c	5
	RX -	6
	n/c	7
	n/c	8

Описание портов связи приведено в таблице $\Pi 4.3$. Base-T — на основе витой пары, Base-FX — на основе волоконно-оптической связи Используемый тип оптического порта SFP. Совместимое оптоволокно 1310нм SMF.

Таблица П4.3. Описание портов связи

Таблица П4.3. Описание портов связи						
Обозначение разъема на задней панели	Порт связи					
МИР 50						
DC405	RS-485-1					
«RS485»	RS-485-2					
«Ethernet-1»	Ethernet 100 Base-T					
«Ethernet-2»	Ethernet 100 Base-T					
	МИР 100, 200, 300					
Матер	оинская плата «Тип 1» (F4) и «тип 4» (H7)					
DC495	RS-485-1					
«RS485»	RS-485-2 (дубл.)					
«Ethernet»	Ethernet 100 Base-T					
	Материнская плата «Тип 2» (F4)					
«RS485»	RS-485-1					
«KS463»	RS-485-2					
«Ethernet-1»	Ethernet 100 Base-T					
«Ethernet-2»	Ethernet 100 Base-T					
Мато	еринская плата «Тип 3» (F4) и тип 5 (H7)					
«RS485»	RS-485-1					
«K3463»	RS-485-2					
«Ethernet-1»	Ethernet 100 Base-T					
«Ethernet-2»	Ethernet 100 Base-T					
«Ethernet-3»	Ethernet 100 Base-T					
	Материнская плата «Тип 6» (H7)					
«RS485»	RS-485-1					
((XS+63))	RS-485-2					
«Ethernet-1»	Ethernet 100 Base-T					
«Ethernet-2»	Ethernet 100 Base-FX*					
«Ethernet-3»	Ethernet 100 Base-FX*					

Приложение 5 — Перечень оборудования и средств измерений, необходимых для проведения проверок

Таблица П5.1. Перечень оборудования и средств измерения

Наименование оборудования	Диапазон Измеряемых (контролируемых) величин	Класс точности или погрешность измерения	Рекомендованное оборудование или нормативный документ
Мультиметр цифровой	(0÷1000) B, (0÷10) A	±0,5 %	MULTIMETR FLUKE 15B
Комплекс программно-тех- нический измерительный	(0,01÷90) A, (0,09÷380) B	±0,5 %	PETOM 61
Измеритель сопротивления, увлажненности и степени старения электроизоляции	(50÷2500) В, 50 Гц	±10 %	MIC-2500
Осциллограф цифровой	(0÷400) В, (0÷200) МГц	±10 % ±1 %	АКИП-4126/3
Устройство измерительное параметров релейной защиты	(0÷999,9) мс (1÷999,9) с	±0,5мс ±0,1 с	PETOM 21
Устройство измерительное электрической прочности и сопротивления изоляции	(100÷6000) B	±2%	Ретом-6000

Примечание: При проведении испытаний и проверок допускается применение другого оборудования, обеспечивающего измерение контролируемых параметров с точностью не ниже требуемой.

Приложение 6 – Учет времени насыщения трансформаторов тока

Для обеспечения правильного функционирования терминалов серии МИР произведенных ООО «АПС» при измерении трансформаторами тока токов короткого замыкания, форма которых соответствует выражению (Г.7) «ГОСТР 58669-2019» и выражению (Б.4) «ПНСТ 283-2018», необходимо учитывать время до насыщения данных ТТ. Расчет времени до насыщения ТТ проводить по требованиям п.5.2 «ГОСТР 58669-2019» при помощи построения кривых и нахождении точки пересечения с самой кривой.

При проведении расчетов необходимо учитывать выполнение условия (5) п.5.1.4 «ГОСТ Р 5869-2019». Невыполнение данного условия указывает на то, что ток предельной кратности меньше действующего тока КЗ, а значит использование ТТ в таких условиях недопустимо.

Рекомендует ориентироваться на значения времени до насыщения (T_{HAC}) TT от апериодической составляющей тока K3 при наличии предельного значения остаточной намагниченности в магнитопроводе TT, при превышении которых обеспечивается правильное функционирование. Значения указаны в таблице ниже для внутренних и внешних K3.

Таблица Пб.1. Минимальное время насыщения ТТ для корректной работы защит.

	жинца 110.1. минимальное времи насыщении 11 дли корректи	T _{HAC}				
	Защиты	Внутренние КЗ	Внешние КЗ			
21	21: Дистанционная защита (ДЗ)					
32P	32Р: Защита по активной мощности, направленная (ЗАМ напр.)					
32Q	32Q: Защита по реактивной мощности, направленная (3PM напр.)					
37	37: Защита минимального тока (ЗМТ)					
40	40: Защита от потери возбуждения (ЗПВ)					
46	46: Токовая защита обратной последовательности (ТЗОП)		7 мс			
48/51LR	48/51LR: Затянутый пуск/блокировка ротора (ЗПД)					
49	49: Защита от тепловой перегрузки (ЗТП)	5 мс				
50/51	50/51: Максимальная токовая защита (МТЗ)	3 MC				
50BF	50BF: Устройство резервирования отказа выключателя (УРОВ)					
50N/51N	50N/51N: Максимальная токовая защита нулевой последовательности (МТЗНП)					
60 CTS	Контроль цепей тока (КЦТ)					
67	67: Максимальная токовая защита, направленная (МТЗ напр.)					
67N	67N: Максимальная токовая защита нулевой последовательности, направленная (МТЗНП напр.)					
87M	87М: Дифференциальная защита электрической машины (ЛЗМ)					
87T	87Т: Дифференциальная защита трансформатора (ДЗТ)	5 мс	10 мс			
87L	87Т: Дифференциальная защита линии (ДЗЛ)					

Приложение 7 – Лист регистрации изменений

	Номера листов (страниц)		Всего ли-					
	1132		\P	анну-	стов		_	
Изм.	изменен-	заме-	но-	лиро-	(страниц)	№ документа	Под-	Дата
	ных	нен-	вых	ван-	в доку-		пись	~····
	112111	ных	22111	ных	менте			
_			все	112111	142	АПДЛ.656121 РЭ1		06.06.2025
			ВСС		1 12	111751.030121131		00.00.2023
-								
-								
 								
<u> </u>								
-								
<u> </u>								
-								
<u> </u>								

СТРАНИЦА ДЛЯ ЗАМ	ЕТОК

КОНТАКТНАЯ ИНФОРМАЦИЯ

Контактная информация для связи с производителем по всем интересующим вопросам:

Вид связи	Контакты		
Сайт	https://www.aps-m.com/		
Центральный офис	Россия, 127106, г. Москва, Нововладыкинский проезд, д. 1, к. 4, помещ. 2		
	+7 (495) 308-04-56	office@aps-m.com	
Производство	Россия, 153002, г. Иваново, ул. Громобоя, д. 1		

Контакты региональных представительств представлены на нашем сайте.